摘要:
The invention relates to a joint prosthesis intended to be mounted between two bones to be joined together. The joint prosthesis comprises a spacer part, intended to be placed between the joint surfaces of the bones to be joined. The spacer part is manufactured of biodegradable polymer, co-polymer, polymer mixture and/or composite. The spacer part is, at least under tissue conditions, porous and elastic. The joint prosthesis further comprises fixation parts which are arranged to fix the spacer part to the bones to be joined, and which are manufactured of biodegradable material.
摘要:
A cylindrical, fibrous, porous joint spacer is provided, having excellent properties, flexibility of formation, and operability, which is intended to be implanted as a prosthesis between bones to be joined together. The joint spacer of the present invention can be formed from a strip of fabric, which is comprised of bioabsorbable fibers and made by a knitting, weaving, non-woven or other technique. The fabric is typically relatively narrow (e.g. 1 to 10 mm wide) and thin (e.g. 0.1 to 1.0 mm thick), depending on the intended application of the prosthetic device to be formed from the fabric. The joint spacer of the present invention is made by wrapping said fabric to yield a cylindrical body; and fixing the free end of the fabric to the surface of the cylindrical body so formed. The joint spacer of the present invention can be implanted in conjunction with one or more fixation parts, to hold the joint spacer in place between the bones to be joined.
摘要:
This invention relates to bioabsorbable multi-layer two-dimensional composite devices and their method of manufacture by spot welding the layers of the device at designated points, which devices can easily be cut into any desirable form by a surgeon during operation on a patient.
摘要:
According to the present invention, a flexible, fibrous hernia mesh is provided, which is intended to be implanted to close hernia defects. The mesh has at least two functional components or layers: (1) a rapidly degradable first layer and (2) a more slowly degradable (with respect to the first layer) second layer. Using the fibrous mesh of this invention, the hernia defect can be closed so that a) the second layer supports the area until the scar tissue is strong enough (around 6 months), to prevent recurrent hernia formation, b) while the more rapid degradation of the first layer induces scar tissue formation due to inflammatory reaction, and c) the second layer isolates the first layer from the abdominal cavity, preventing tissue to tissue adhesion onto the intestines. The mesh is placed on the uncovered fascia area with its more rapidly absorbable side (the first layer) towards the fascia.