摘要:
An electro-optic display comprises first and second substrates and a lamination adhesive layer and a layer of a solid electro-optic material disposed between the first and second substrates, the lamination adhesive layer having a volume resistivity, measured at 10° C., which does not change by a factor of more than about 3 after being held at 25° C. and 45 percent relative humidity for 1000 hours. The electro-optic material is preferably an encapsulated electrophoretic material. Other desirable characteristics of lamination adhesives for use in electro-optic displays are also described.
摘要:
An electro-optic display comprises a layer (130) of a solid electro-optic material, at least one electrode disposed adjacent the layer (130) of electro-optic material, and a layer (180) of a lamination adhesive interposed between the layer (130) of electro-optic material and the electrode, the lamination adhesive (180) having a higher electrical conductivity in a direction perpendicular to the layer of lamination adhesive than in the plane of the layer.
摘要:
An electro-optic display comprises a layer (130) of a solid electro-optic material, at least one electrode disposed adjacent the layer (130) of electro-optic material, and a layer (180) of a lamination adhesive interposed between the layer (130) of electro-optic material and the electrode, the lamination adhesive (180) having a higher electrical conductivity in a direction perpendicular to the layer of lamination adhesive than in the plane of the layer.
摘要:
An electro-optic display comprises a layer (130) of a solid electro-optic material, at least one electrode disposed adjacent the layer (130) of electro-optic material, and a layer (180) of a lamination adhesive interposed between the layer (130) of electro-optic material and the electrode, the lamination adhesive (180) having a higher electrical conductivity in a direction perpendicular to the layer of lamination adhesive than in the plane of the layer.
摘要:
An electro-optic display comprises a layer (130) of a solid electro-optic material, at least one electrode disposed adjacent the layer (130) of electro-optic material, and a layer (180) of a lamination adhesive interposed between the layer (130) of electro-optic material and the electrode, the lamination adhesive (180) having a higher electrical conductivity in a direction perpendicular to the layer of lamination adhesive than in the plane of the layer.
摘要:
The invention relates to electro-optic displays and methods for driving such displays. The invention provides (i) electrochromic displays with solid charge transport layers; (ii) apparatus and methods for improving the contrast and reducing the cost of electrochromic displays; (iii) apparatus and methods for sealing electrochromic displays from the outside environment and preventing ingress of contaminants into such a display; and (iv) methods for adjusting the driving of electro-optic displays to allow for environmental and operating parameters.
摘要:
The invention relates to electro-optic displays and methods for driving such displays. The invention provides (i) electrochromic displays with solid charge transport layers; (ii) apparatus and methods for improving the contrast and reducing the cost of electrochromic displays; (iii) apparatus and methods for sealing electrochromic displays from the outside environment and preventing ingress of contaminants into such a display; and (iv) methods for adjusting the driving of electro-optic displays to allow for environmental and operating parameters.
摘要:
An electro-optic display, having at least one pixel capable of achieving any one of at least four different gray levels including two extreme optical states, is driven by displaying a first image on the display, and rewriting the display to display a second image thereon, wherein, during the rewriting of the display, any pixel which has undergone a number of transitions exceeding a predetermined value without touching an extreme optical state, is driven to at least one extreme optical state before driving that pixel to its final optical state in the second image.