Abstract:
An electro-optic display comprises a substrate (100), non-linear devices (102) disposed substantially in one plane on the substrate (100), pixel electrodes (106) connected to the non-linear devices (102), an electro-optic medium (110) and a common electrode (112) on the opposed side of the electro-optic medium (110) from the pixel electrodes (106). The moduli of the various parts of the display are arranged so that, when the display is curved, the neutral axis or neutral plane lies substantially in the plane of the non-linear devices (102).
Abstract:
A non-linear element is formed on a flexible substrate by securing the substrate to a rigid carrier, forming the non-linear element, and then separating the flexible substrate from the carrier. The process allows flexible substrates to be processed in a conventional fab intended to process rigid substrates. In a second method, a transistor is formed on a insulating substrate by forming gate electrodes, depositing a dielectric layer, a semiconductor layer and a conductive layer, patterning the conductive layer to form source, drain and pixel electrodes, covering the channel region of the resultant transistor with an etch-resistant material and etching using the etch-resistant material and the conductive layer as a mask, the etching extending substantially through the semiconductor layer between adjacent transistors. The invention also provides a process for forming a diode on a substrate by depositing on the substrate a first conductive layer, and a second patterned conductive layer and a patterned dielectric layer over parts of the first conductive layer, and etching the first conductive layer using the second conductive layer and dielectric layer as an etch mask. Finally, the invention provides a process for driving an impulse-sensitive electro-optic display.
Abstract:
A bistable electro-optic display has a plurality of pixels, each of which is capable of displaying at least three gray levels. The display is driven by a method comprising: storing a look-up table containing data representing the impulses necessary to convert an initial gray level to a final gray level; storing data representing at least an initial state of each pixel of the display; receiving an input signal representing a desired final state of at least one pixel of the display; and generating an output signal representing the impulse necessary to convert the initial state of said one pixel to the desired final state thereof, as determined from said look-up table. The invention also provides a method for reducing the remnant voltage of an electro-optic display.
Abstract:
A non-linear element is formed on a flexible substrate by securing the substrate to a rigid carrier, forming the non-linear element, and then separating the flexible substrate from the carrier. The process allows flexible substrates to be processed in a conventional fab intended to process rigid substrates. In a second method, a transistor is formed on a insulating substrate by forming gate electrodes, depositing a dielectric layer, a semiconductor layer and a conductive layer, patterning the conductive layer to form source, drain and pixel electrodes, covering the channel region of the resultant transistor with an etch-resistant material and etching using the etch-resistant material and the conductive layer as a mask, the etching extending substantially through the semiconductor layer between adjacent transistors. The invention also provides a process for forming a diode on a substrate by depositing on the substrate a first conductive layer, and a second patterned conductive layer and a patterned dielectric layer over parts of the first conductive layer, and etching the first conductive layer using the second conductive layer and dielectric layer as an etch mask. Finally, the invention provides a process for driving an impulse-sensitive electro-optic display.
Abstract:
A bistable electro-optic display is updated by writing an image on the display using a first drive scheme capable of driving pixels to multiple gray levels, and thereafter varied using a second drive scheme using only two gray levels, at least one of which is not an extreme optical state of the pixel.
Abstract:
A dielectrophoretic display comprises a substrate having walls defining at least one cavity, the cavity having a viewing surface and a side wall inclined to the viewing surface; a suspending fluid contained within the cavity; a plurality of at least one type of particle suspended within the suspending fluid; and means for applying to the fluid an electric field effect effective to cause dielectrophoretic movement of the particles to the side wall of the cavity.
Abstract:
An electro-optic display comprises a bistable electro-optic medium, a plurality of pixel electrodes, with associated non-linear elements, and a common electrode, disposed on opposed sides of the electro-optic medium. The display has a writing mode, in which at least two different voltages are applied to different pixel electrodes, and a non-writing mode in which the voltages applied to the pixel electrodes are controlled so that any image previously written on the electro-optic medium is substantially maintained. The display is arranged to apply to the common electrode a first voltage when the display is in its writing mode and a second voltage, different from the first voltage, when the display is in its non-writing mode.
Abstract:
The invention relates to electro-optic displays and methods for driving such displays. The invention provides (i) electrochromic displays with solid charge transport layers; (ii) apparatus and methods for improving the contrast and reducing the cost of electrochromic displays; (iii) apparatus and methods for sealing electrochromic displays from the outside environment and preventing ingress of contaminants into such a display; and (iv) methods for adjusting the driving of electro-optic displays to allow for environmental and operating parameters.
Abstract:
An encapsulated electrophoretic display having a plurality of non-spherical capsules disposed substantially in a single layer on a substrate.
Abstract:
The invention provides a first process for addressing an electro-optic material having first and second display states differing in at least one optical characteristic and being capable of being changed from its first to its second display state by application of an electric field to the material, the process comprising applying an electrically charged fluid to a portion of at least one surface of the material, thereby changing the display state of a portion of the material. The invention also provides a second process for addressing an electro-optic material, this process comprising contacting the electro-optic material with a non-conductive brush means wet with a conductive liquid while applying a potential difference between the brush means and the electro-optic material.