摘要:
The present disclosure relates to a method of patterning a photosensitive material on a polymeric fill matrix comprising at least one latent photoacid generator; and a structure prepared according to said method. The method comprises: a. depositing a polymeric fill matrix comprising at least one latent photoacid generator; b. curing the polymeric fill matrix; c. depositing a layer of photosensitive material directly onto the cured polymeric fill matrix; and d. forming a pattern with at least one opening in the layer of photosensitive material with lithography.
摘要:
The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nanotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nanotubes are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
摘要:
The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nantotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nantobues are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
摘要:
The present disclosure relates to a method of patterning a photosensitive material on a polymeric fill matrix comprising at least one latent photoacid generator; and a structure prepared according to said method. The method comprises: a. depositing a polymeric fill matrix comprising at least one latent photoacid generator; b. curing the polymeric fill matrix; c. depositing a layer of photosensitive material directly onto the cured polymeric fill matrix; and d. forming a pattern with at least one opening in the layer of photosensitive material with lithography.
摘要:
The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nanotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nanotubes are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
摘要:
The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nanotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nanotubes are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
摘要:
The present disclosure relates to a method for selectively etching-back a polymer matrix to expose tips of carbon nanotubes comprising: a. growing carbon nanotubes on a conductive substrate; b. filling the gap around the carbon nanotubes with a polymeric fill matrix comprising at least one latent photoacid generator; and c. selectively etching-back the polymeric fill matrix to expose tips of the carbon nanotubes.
摘要:
The present disclosure relates to a method for selectively etching-back a polymer matrix to expose tips of carbon nanotubes comprising: a. growing carbon nanotubes on a conductive substrate; b. filling the gap around the carbon nanotubes with a polymeric fill matrix comprising at least one latent photoacid generator; and c. selectively etching-back the polymeric fill matrix to expose tips of the carbon nanotubes.
摘要:
An organic planarizing layer (OPL) is formed atop a semiconductor substrate which includes a plurality of gate lines thereon. Each gate line includes at least a high k gate dielectric and a metal gate. A patterned photoresist having at least one pattern formed therein is then positioned atop the OPL. The at least one pattern in the photoresist is perpendicular to each of the gate lines. The pattern is then transferred by etching into the OPL and portions of each of the underlying gate lines to provide a plurality of gate stacks each including at least a high k gate dielectric portion and a metal gate portion. The patterned photoresist and the remaining OPL layer are then removed utilizing a sequence of steps including first contacting with a first acid, second contacting with an aqueous cerium-containing solution, and third contacting with a second acid.
摘要:
An organic planarizing layer (OPL) is formed atop a semiconductor substrate which includes a plurality of gate lines thereon. Each gate line includes at least a high k gate dielectric and a metal gate. A patterned photoresist having at least one pattern formed therein is then positioned atop the OPL. The at least one pattern in the photoresist is perpendicular to each of the gate lines. The pattern is then transferred by etching into the OPL and portions of each of the underlying gate lines to provide a plurality of gate stacks each including at least a high k gate dielectric portion and a metal gate portion. The patterned photoresist and the remaining OPL layer are then removed utilizing a sequence of steps including first contacting with a first acid, second contacting with an aqueous cerium-containing solution, and third contacting with a second acid.