Abstract:
The present invention provides a receiver including a first band group, a second band group and a mixer. The first band group includes at least one LNA, wherein the first band group is configured to select one first LNA to receive a first input signal to generate an amplified first input signal. The second band group includes at least one LNA, wherein the second band group is configured to select one second LNA to receive a second input signal to generate an amplified second input signal. The first band group and the second band group are coupled to a first input terminal and a second input terminal of the mixer, respectively, and the mixer receives one of the amplified first input signal and the amplified second input signal to generate an output signal.
Abstract:
A signal modulator includes: a modulating circuit; a first signal trace block arranged to conduct a first in-phase oscillating signal to the modulating circuit, and conduct a first quadrature-phase oscillating signal to the modulating circuit; and a second signal trace block arranged to conduct a second in-phase oscillating signal to the modulating circuit, and conduct a second quadrature-phase oscillating signal to the modulating circuit, and a phase difference of the first in-phase oscillating signal caused by the first signal trace block substantially equals a phase difference of the second quadrature-phase oscillating signal caused by the second signal trace block, a second quadrature-phase oscillating signal to the modulating circuit, and a phase difference of the second in-phase oscillating signal caused by the second signal trace block substantially equals a phase difference of the first quadrature-phase oscillating signal caused by the first signal trace block.
Abstract:
A signal processing circuit has a first mixer, a first amplifier, and a pulling effect mitigation circuit. The first mixer mixes a first input signal and a first oscillation signal to generate a first output signal, wherein the first oscillation signal is generated by dividing a frequency of a reference clock with a frequency dividing factor. The first amplifier amplifies the first output signal, and generates an amplified output signal at an output terminal of the first amplifier. The pulling effect mitigation circuit is coupled to the output terminal of the first amplifier, and generates a compensation signal to the output terminal for reducing at least an Nth harmonic of the amplified output signal, wherein a value of N is equal to the frequency dividing factor.
Abstract:
A transmitter includes a first channel and a second channel. The first channel includes a first mixer, and is used for processing a first input signal to generate a first output signal; the second channel includes a second mixer, where the second channel does not receive any input signal. When the transmitter is operated under a first mode, both the first mixer and the second mixer receive oscillation signals.
Abstract:
The present invention provides a receiver including a first band group, a second band group and a mixer. The first band group includes at least one LNA, wherein the first band group is configured to select one first LNA to receive a first input signal to generate an amplified first input signal. The second band group includes at least one LNA, wherein the second band group is configured to select one second LNA to receive a second input signal to generate an amplified second input signal. The first band group and the second band group are coupled to a first input terminal and a second input terminal of the mixer, respectively, and the mixer receives one of the amplified first input signal and the amplified second input signal to generate an output signal.
Abstract:
A communication unit includes a plurality of parallel radio frequency, RF, signal paths. Located between a first RF signal path of the plurality of parallel RF signal paths comprising at least one first RF amplifier and a second signal path comprising at least one second RF amplifier is one of a shared inductor or shared transformer. The at least one first RF amplifier is coupled to a supply voltage via a first switch and at least one second RF amplifier is coupled to the supply voltage via a second switch, and the first switch is closed that provides the supply voltage to the at least one second RF amplifier whilst the second switch is opened.
Abstract:
A communication unit includes a plurality of parallel radio frequency, RF, signal paths. Located between a first RF signal path of the plurality of parallel RF signal paths comprising at least one first RF amplifier and a second signal path comprising at least one second RF amplifier is one of a shared inductor or shared transformer. The at least one first RF amplifier is coupled to a supply voltage via a first switch and at least one second RF amplifier is coupled to the supply voltage via a second switch, and the first switch is closed that provides the supply voltage to the at least one second RF amplifier whilst the second switch is opened.
Abstract:
A transmitter includes a first channel and a second channel. The first channel includes a first mixer, and is used for processing a first input signal to generate a first output signal; the second channel includes a second mixer, where the second channel does not receive any input signal. When the transmitter is operated under a first mode, both the first mixer and the second mixer receive oscillation signals.
Abstract:
A signal processing circuit has a first mixer, a first amplifier, and a pulling effect mitigation circuit. The first mixer mixes a first input signal and a first oscillation signal to generate a first output signal, wherein the first oscillation signal is generated by dividing a frequency of a reference clock with a frequency dividing factor. The first amplifier amplifies the first output signal, and generates an amplified output signal at an output terminal of the first amplifier. The pulling effect mitigation circuit is coupled to the output terminal of the first amplifier, and generates a compensation signal to the output terminal for reducing at least an Nth harmonic of the amplified output signal, wherein a value of N is equal to the frequency dividing factor.
Abstract:
A signal modulator includes: a modulating circuit; a first signal trace block arranged to conduct a first in-phase oscillating signal to the modulating circuit, and conduct a first quadrature-phase oscillating signal to the modulating circuit; and a second signal trace block arranged to conduct a second in-phase oscillating signal to the modulating circuit, and conduct a second quadrature-phase oscillating signal to the modulating circuit, and a phase difference of the first in-phase oscillating signal caused by the first signal trace block substantially equals a phase difference of the second quadrature-phase oscillating signal caused by the second signal trace block, a second quadrature-phase oscillating signal to the modulating circuit, and a phase difference of the second in-phase oscillating signal caused by the second signal trace block substantially equals a phase difference of the first quadrature-phase oscillating signal caused by the first signal trace block.