Abstract:
Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
Abstract:
A system may include a therapy delivery module configured to deliver electrical stimulation therapy to a tissue of a patient in accordance with a first stimulation therapy program. The first stimulation therapy program may define a first stimulation intensity below a perception threshold stimulation intensity of the patient. The therapy delivery module also may be configured to deliver electrical stimulation therapy to the tissue of the patient in accordance with a second stimulation therapy program. The second stimulation therapy program may define a second stimulation intensity at or above the perception threshold stimulation intensity. The system also may include a processor configured to determine stimulation parameter values for the first stimulation therapy program that result in a first volume of effect and determine stimulation parameter values for the second stimulation therapy program that result in a second volume of effect substantially the same as the first volume of effect.
Abstract:
Delivery of peripheral nerve field stimulation (PNFS) in combination with one or more other therapies is described. The other therapy delivered in combination with PNFS may be, for example, a different type of neurostimulation, such as spinal cord stimulation (SCS), or a drug. PNFS and the other therapy may be delivered simultaneously, in an alternating fashion, according to a schedule, and/or selectively, e.g., in response to a request received from a patient or clinician. A combination therapy that includes PNFS may be able to more completely address complex or multifocal pain than would be possible through delivery of either PNFS or other therapies alone. Further, the combination of PNFS with one or more other therapies may reduce the likelihood that neural accommodation will impair the perceived effectiveness PNFS or the other therapies.
Abstract:
Delivery of peripheral nerve field stimulation (PNFS) in combination with one or more other therapies is described. The other therapy delivered in combination with PNFS may be, for example, a different type of neurostimulation, such as spinal cord stimulation (SCS), or a drug. PNFS and the other therapy may be delivered simultaneously, in an alternating fashion, according to a schedule, and/or selectively, e.g., in response to a request received from a patient or clinician. A combination therapy that includes PNFS may be able to more completely address complex or multifocal pain than would be possible through delivery of either PNFS or other therapies alone. Further, the combination of PNFS with one or more other therapies may reduce the likelihood that neural accommodation will impair the perceived effectiveness PNFS or the other therapies.
Abstract:
Delivery of peripheral nerve field stimulation (PNFS) in combination with one or more other therapies is described. The other therapy delivered in combination with PNFS may be, for example, a different type of neurostimulation, such as spinal cord stimulation (SCS), or a drug. PNFS and the other therapy may be delivered simultaneously, in an alternating fashion, according to a schedule, and/or selectively, e.g., in response to a request received from a patient or clinician. A combination therapy that includes PNFS may be able to more completely address complex or multifocal pain than would be possible through delivery of either PNFS or other therapies alone. Further, the combination of PNFS with one or more other therapies may reduce the likelihood that neural accommodation will impair the perceived effectiveness PNFS or the other therapies.
Abstract:
In some examples, the disclosure relates to system, devices, and techniques for delivering dorsal column stimulation. One or more locations for dorsal column stimulation may be identified based on sensed signals evoked by delivery of stimulation to a dorsal root and/or peripheral nerve of a patient. In some examples, an IMD may deliver dorsal column stimulation in combination with dorsal root stimulation to a patient to treat a patient condition.
Abstract:
In some examples, the disclosure relates to system, devices, and techniques for delivering dorsal column stimulation. One or more locations for dorsal column stimulation may be identified based on sensed signals evoked by delivery of stimulation to a dorsal root and/or peripheral nerve of a patient. In some examples, an IMD may deliver dorsal column stimulation in combination with dorsal root stimulation to a patient to treat a patient condition.
Abstract:
A system may include a therapy delivery module configured to deliver electrical stimulation therapy to a tissue of a patient in accordance with a first stimulation therapy program. The first stimulation therapy program may define a first stimulation intensity below a perception threshold stimulation intensity of the patient. The therapy delivery module also may be configured to deliver electrical stimulation therapy to the tissue of the patient in accordance with a second stimulation therapy program. The second stimulation therapy program may define a second stimulation intensity at or above the perception threshold stimulation intensity. The system also may include a processor configured to determine stimulation parameter values for the first stimulation therapy program that result in a first volume of effect and determine stimulation parameter values for the second stimulation therapy program that result in a second volume of effect substantially the same as the first volume of effect.
Abstract:
Delivery of peripheral nerve field stimulation (PNFS) in combination with one or more other therapies is described. The other therapy delivered in combination with PNFS may be, for example, a different type of neurostimulation, such as spinal cord stimulation (SCS), or a drug. PNFS and the other therapy may be delivered simultaneously, in an alternating fashion, according to a schedule, and/or selectively, e.g., in response to a request received from a patient or clinician. A combination therapy that includes PNFS may be able to more completely address complex or multifocal pain than would be possible through delivery of either PNFS or other therapies alone. Further, the combination of PNFS with one or more other therapies may reduce the likelihood that neural accommodation will impair the perceived effectiveness PNFS or the other therapies.
Abstract:
Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.