Abstract:
A cardiac medical system, such as an implantable cardioverter defibrillator (ICD) system, receives a cardiac electrical signal by and senses cardiac events when the signal crosses an R-wave sensing threshold. The system determines at least one sensed event parameter from the cardiac electrical signal for consecutive cardiac events sensed by the sensing circuit and compares the sensed event parameters to P-wave oversensing criteria. The system detects P-wave oversensing in response to the sensed event parameters meeting the P-wave oversensing criteria; and adjusts at least one of an R-wave sensing control parameter or a therapy delivery control parameter in response to detecting the P-wave oversensing.
Abstract:
A medical device is configured to detect an alternating pattern of signal features determined from consecutive segments of a cardiac electrical signal and determine a gross morphology metric from at least one segment of the cardiac electrical signal. The device is configured to detect cardiac event oversensing in response to detecting the alternating pattern and the gross morphology metric not meeting tachyarrhythmia morphology criteria. The medical device may withhold detecting an arrhythmia in response to detecting the cardiac event oversensing.
Abstract:
A medical device processor is configured to receive a first cardiac electrical signal sensed from a first sensing electrode vector, receive a second cardiac electrical signal sensed from a second sensing electrode vector different than the first sensing electrode vector, and construct a third cardiac electrical signal from the first cardiac electrical signal and the second cardiac electrical signal. In some examples, the system determines sensed cardiac events according to at least one setting of a cardiac event sensing threshold control parameter from at least the third cardiac electrical signal and may determine at least one acceptable setting of a sensing control parameter based on the determined sensed cardiac events. The processor may generate an output representative of the determined sensed cardiac events.
Abstract:
A medical device, such as an extra-cardiovascular implantable cardioverter defibrillator (ICD), senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal acquired by a second sensing channel in response to each sensed R-wave. The ICD determines morphology match scores from the stored time segments of the second cardiac electrical signal and, based on the morphology match scores, withholds detection of a tachyarrhythmia episode. In some examples, the ICD detects T-wave oversensing based on the morphology match scores and withholds detection of a tachyarrhythmia episode in response to detecting the T-wave oversensing.
Abstract:
In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
Abstract:
A medical device, such as an extra-cardiovascular implantable cardioverter defibrillator (ICD), senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal acquired by a second sensing channel in response to each sensed R-wave. The ICD determines morphology match scores from the stored time segments of the second cardiac electrical signal and, based on the morphology match scores, withholds detection of a tachyarrhythmia episode. In some examples, the ICD detects T-wave oversensing based on the morphology match scores and withholds detection of a tachyarrhythmia episode in response to detecting the T-wave oversensing.
Abstract:
A medical device system, such as an extra-cardiovascular implantable cardioverter defibrillator ICD, senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal in response to each sensed R-wave. The medical device system determines a morphology parameter correlated to signal noise from time segments of the second cardiac electrical signal, detects a noisy signal segment based on the signal morphology parameter; and withholds detection of a tachyarrhythmia episode in response to detecting a threshold number of noisy signal segments.
Abstract:
A medical device system, such as an extra-cardiovascular implantable cardioverter defibrillator ICD, senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal in response to each sensed R-wave. The medical device system determines a morphology parameter correlated to signal noise from time segments of the second cardiac electrical signal, detects a noisy signal segment based on the signal morphology parameter; and withholds detection of a tachyarrhythmia episode in response to detecting a threshold number of noisy signal segments.
Abstract:
A medical device is configured to receive at least two physical cardiac electrical signals from a patient's heart via electrodes defining at least two physical sensing vectors. The medical device determines a signal feature for each of a plurality of virtual sensing vectors extending at a plurality of angles relative to one of the at least two physical sensing vectors during a known cardiac rhythm, compares the determined signal features and establishes criteria for confirming a suspected condition in response to the comparing.
Abstract:
Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.