摘要:
A ceramic coating with gradient density/porosity and/or incorporated biologically active agents can be fabricated on the surface of substrates, including the surface of implantable medical devices.
摘要:
A ceramic coating with gradient density/porosity and/or incorporated biologically active agents can be fabricated on the surface of substrates, including the surface of implantable medical devices.
摘要:
A ceramic coating with gradient density/porosity and/or incorporated biologically active agents can be fabricated on the surface of substrates, including the surface of implantable medical devices.
摘要:
Ceramic/structural protein composites and methods of preparation are disclosed, including coatings and films. Ceramic/structural protein coatings can be fabricated on the surface of substrates, including the surface of implantable medical devices.
摘要:
Ceramic/structural protein composites and methods of preparation are disclosed, including coatings and films. Ceramic/structural protein coatings can be fabricated on the surface of substrates, including the surface of implantable medical devices.
摘要:
Ceramic/structural protein composites and methods of preparation are disclosed, including coatings and films. Ceramic/structural protein coatings can be fabricated on the surface of substrates, including the surface of implantable medical devices.
摘要:
An orthopedic implant having a metal surface and a hydroxyapatite layer comprising gallium ions therein disposed on at least part of the metal surface is described. The hydroxyapatite layer has an average crystallite size of less than about 75 nm in at least one direction and dissolves for more than 2 hours in vitro. The hydroxyapatite layer is substantially free of carbonate. The coating, which is formed on a sodium titanate surface, has increased shear strength and tensile strength. The coating is formed by a solution deposited hydroxyapatite process under inert conditions. The pH of the solution varies by less than 0.1 pH unit/hour during coating formation.
摘要:
An orthopedic implant having a metal surface and a calcium phosphate layer disposed on at least part of the metal surface is described. The calcium phosphate layer has an average crystallite size of less than about 100 nm in at least one direction and dissolves for more than 2 hours in vitro. The calcium phosphate layer is substantially free of carbonate. The coating, which is formed on a sodium titanate surface, has increased shear strength and tensile strength. The coating is formed by a solution deposited hydroxyapatite process under inert conditions. The pH of the solution varies by less than 0.1 pH unit/hour during coating formation.