摘要:
The invention relates to vaccines comprising recombinant vectors, such as recombinant adenoviruses. The vectors comprise heterologous nucleic acids encoding for at least two antigens from one or more tuberculosis-causing bacilli. The invention also relates to the use of specific protease recognition sites linking antigens through which the encoded antigens are separated upon cleavage. After cleavage, the antigens contribute to the immune response in a separate manner. The recombinant vectors may comprise a nucleic acid encoding the protease cleaving the linkers and separating the antigens. The invention furthermore relates to the use of genetic adjuvants encoded by the recombinant vectors, wherein such genetic adjuvants may also be cleaved through the presence of the cleavable linkers and the specific protease.
摘要:
A packaging cell line capable of complementing recombinant adenoviruses based on serotypes from subgroup B, preferably adenovirus type 35. The cell line is preferably derived from primary, diploid human cells (e.g., primary human retinoblasts, primary human embryonic kidney cells and primary human amniocytes) which are transformed by adenovirus E1 sequences either operatively linked on one DNA molecule or located on two separate DNA molecules, the sequences being operatively linked to regulatory sequences enabling transcription and translation of encoded proteins. Also disclosed is a cell line derived from PER.C6 (ECACC deposit number 96022940), which cell expresses functional Ad35 E1B sequences. The Ad35-E1B sequences are driven by the E1B promoter or a heterologous promoter and terminated by a heterologous poly-adenylation signal. The new cell lines are useful for producing recombinant adenoviruses designed for gene therapy and vaccination. The cell line can also be used for producing human recombinant therapeutic proteins such as human growth factors and human antibodies. In addition, the cell lines are useful for producing human viruses other than adenovirus such as influenza virus, herpes simplex virus, rotavirus, measles virus.
摘要:
Described is a method for producing a protein of interest, the method comprising: a) providing a recombinant adenoviral vector comprising nucleic acid encoding the protein of interest under control of a promoter, wherein the adenoviral vector has deletions in a first region and in a second region of the adenovirus genome, wherein each of the first region and the second region is required for adenoviral genome replication and/or adenovirus particle formation, b) propagating the adenoviral vector in a first type of complementing cells that express proteins from the first and from the second region of the adenovirus genome so as to complement the deletions of the recombinant adenoviral vector, to obtain recombinant adenovirus particles, c) infecting a culture of a second type of complementing cells with the recombinant adenovirus particles, wherein the second type of complementing cells express protein from the first region of the adenovirus genome but not protein from the second region of the adenovirus genome, to produce the protein of interest, and d) harvesting the protein of interest.
摘要:
A gene delivery vehicle having been provided with at least a tissue tropism for cells selected from the group of smooth muscle cells, endothelial cells, and/or liver cells. The tissue tropism is generally provided by a virus capsid, such as one comprising protein fragments from at least two different viruses, such as two different adenoviruses, including adenovirus of subgroup C or subgroup B (for example, adenovirus 16). The protein fragments can comprise a tissue tropism-determining fragment of a fiber protein derived from a subgroup B adenovirus. Also, cells for producing such gene delivery vehicles and pharmaceutical compositions containing these gene delivery vehicles are provided. Further, a method is disclosed for delivering nucleic acid to cells such as smooth muscle cells and/or endothelial cells which involves administering to the cells an adenovirus capsid having proteins from at least two different adenoviruses and wherein at least a tissue tropism-determining fragment of a fiber protein is derived from a subgroup B adenovirus. Particular constructs are also disclosed.
摘要:
A gene delivery vehicle having been provided with at least a tissue tropism for cells selected from the group of smooth muscle cells, endothelial cells, and/or liver cells. The tissue tropism is generally provided by a virus capsid, such as one comprising protein fragments from at least two different viruses, such as two different adenoviruses, including adenovirus of subgroup C or subgroup B (for example, adenovirus 16). The protein fragments can comprise a tissue tropism-determining fragment of a fiber protein derived from a subgroup B adenovirus. Also, cells for producing such gene delivery vehicles and pharmaceutical compositions containing these gene delivery vehicles are provided. Further, a method is disclosed for delivering nucleic acid to cells such as smooth muscle cells and/or endothelial cells which involves administering to the cells an adenovirus capsid having proteins from at least two different adenoviruses and wherein at least a tissue tropism-determining fragment of a fiber protein is derived from a subgroup B adenovirus. Particular constructs are also disclosed.
摘要:
Described is a method for producing a protein of interest, the method comprising: a) providing a recombinant adenoviral vector comprising nucleic acid encoding the protein of interest under control of a promoter, wherein the adenoviral vector has deletions in a first region and in a second region of the adenovirus genome, wherein each of the first region and the second region is required for adenoviral genome replication and/or adenovirus particle formation, b) propagating the adenoviral vector in a first type of complementing cells that express proteins from the first and from the second region of the adenovirus genome so as to complement the deletions of the recombinant adenoviral vector, to obtain recombinant adenovirus particles, c) infecting a culture of a second type of complementing cells with the recombinant adenovirus particles, wherein the second type of complementing cells express protein from the first region of the adenovirus genome but not protein from the second region of the adenovirus genome, to produce the protein of interest, and d) harvesting the protein of interest.
摘要:
A gene delivery vehicle having been provided with at least a tissue tropism for cells selected from the group of smooth muscle cells, endothelial cells, and/or liver cells. The tissue tropism is generally provided by a virus capsid, such as one comprising protein fragments from at least two different viruses, such as two different adenoviruses, including adenovirus of subgroup C or subgroup B (for example, adenovirus 16). The protein fragments can comprises a tissue tropism determining fragment of a fiber protein derived from a subgroup B adenovirus. Also, cells for producing such gene delivery vehicles and pharmaceutical compositions containing said gene delivery vehicles. Further, a method of delivering nucleic acid to cells such as smooth muscle cells and/or endothelial cells which involves administering to the cells an adenovirus capsid having proteins from at least two different adenoviruses and wherein at least a tissue tropism determining fragment of a fiber protein is derived from a subgroup B adenovirus. Particular construct are also disclosed.
摘要:
Described are of recombinant adenoviral vectors in vaccination regimens, such as prime/boost set-ups and subsequent vaccinations and applications for gene therapy. Moreover, described are assays to determine the best regimen for applying the most suitable recombinant viral vector in a vaccination or gene therapy setting.
摘要:
Described are of recombinant adenoviral vectors in vaccination regimens, such as prime/boost set-ups and subsequent vaccinations and applications for gene therapy. Moreover, described are assays to determine the best regimen for applying the most suitable recombinant viral vector in a vaccination or gene therapy setting.