Abstract:
Thermally regenerable ion exchange resins, which are oxidation resistant, comprising polyetheramines derived from a poly (.alpha.-haloepoxyethane) which has been crosslinked and aminated.
Abstract:
A process of manufacturing an amphoteric composite resin which process comprises first polymerizing a dispersion comprising two liquid phases wherein the first liquid phase comprises at least one monomer containing a basic group or a precursor or derivative thereof and a crosslinking agent, and the second liquid phase comprises at least one monomer containing an acidic group or a precursor or derivative thereof and a crosslinking agent, and wherein the monomers are not of opposite charge, the two liquid phases are substantially immiscible and partitioning of the monomers from one liquid phase to the other is minimal, to form a composite polymeric material; and second treating the composite polymeric material to convert any acidic group precursor or derivative and any basic group precursor or derivative to the free acid and free base respectively to form an amphoteric composite resin.
Abstract:
A process for demineralizing an aqueous saline solution containing a deoxygenating agent by treating it with a thermally regenerable ion-exchange resin comprising a resinous material derived from a substituted diallylamine.
Abstract:
Processes for making copolymers comprising treating a reaction mixture of a monomer and a substrate comprising ferromagnetic material located in a polymeric matrix so as to polymerize the monomer in a manner that it forms a polymeric shell grafted on to and surrounding the substrate, the polymerization of the monomer being initiated by adding the components of a redox system sequentially to the reaction mixture.
Abstract:
Ion exchange resins of the poly(allylamine) type which comprise an aralkyl radical or a saturated aliphatic radical, and which may be made by reacting an allylamine type polymer with an organic dihalo compound so as to crosslink it.