摘要:
A catalyst system comprises a physical mixture of a conversion catalyst and a sulfur sorbent to accommodate small quantities of sulfur from a hydrocarbon feedstock. Preferably, the physical mixture comprises a sulfur-sensitive reforming catalyst protected from sulfur deactivation by a manganeseoxide catalyst. The invention shows substantial benefits over prior-art processes in catalyst utilization.
摘要:
A catalyst system comprises a physical mixture of a conversion catalyst and a sulfur sorbent to accommodate small quantities of sulfur from a hydrocarbon feedstock. Preferably, the physical mixture comprises a sulfur-sensitive reforming catalyst protected from sulfur deactivation by a manganese-oxide catalyst. The invention shows substantial benefits over prior-art processes in catalyst utilization.
摘要:
A hydrocarbon feedstock is catalytically reformed in a sequence comprising a continuous-reforming zone, consisting essentially of a moving-bed catalytic reforming zone and continuous regeneration of catalyst particles, and a zeolitic-reforming zone containing a catalyst comprising a platinum-group metal and a nonacidic zeolite. The process combination permits higher severity, higher aromatics yields and/or increased throughput in the continuous-reforming zone, thus showing surprising benefits over prior-art processes, and is particularly useful in upgrading existing moving-bed reforming facilities with continuous catalyst regeneration.
摘要:
A hydrocarbon feedstock is catalytically reformed in a sequence comprising a continuous-reforming zone, consisting essentially of a moving-bed catalytic reforming zone and continuous regeneration of catalyst particles, and a zeolitic-reforming zone containing a catalyst comprising a platinum-group metal and a nonacidic zeolite. The process combination permits higher severity, higher aromatics yields and/or increased throughput in the continuous-reforming zone, thus showing surprising benefits over prior-art processes, and is particularly useful in upgrading existing moving-bed reforming facilities with continuous catalyst regeneration.
摘要:
A process combination is disclosed to selectively upgrade naphtha in a manner to obtain an aromatics-rich, low-olefin product from the combination. Preferably the naphtha is subjected to aromatization to obtain an aromatics concentrate which is upgraded by hydrogenation of olefins in the aromatics-rich stream. Olefin saturation is effected following separation of the major portion of hydrogen from the aromatics concentrate and before fractionation/stabilization for removal of light ends, with concomitant low saturation of aromatics and with removal of light ends in a fractionator which would be associated with the aromatization in any case.
摘要:
A process combination is disclosed to selectively upgrade naphtha to obtain gasoline which is in accordance with current standards for reformulated fuels. A naphtha feedstock is fractionated to selectively direct light naphtha to isomerization or blending, a head-cut fraction to reforming, and a heavy potion to selective isoparaffin synthesis to yield light and heavy synthesis naphtha and isobutane. The heavy potion of the synthesis naphtha is processed by reforming. Light naphtha may be isomerized, with or without recycle of low-octane components of the product. A gasoline component is blended from light, synthesis, and reformate products from the process combination.
摘要:
Hydrocarbon conversion processes having a susceptibility to coke formation on the internal surfaces of processing equipment are improved by inhibiting the formation of coke with the use of a glass bead treatment for the metal surfaces. After treating with ordinary glass bead cleaning methods, metal surfaces are found to inhibit coke formation. The glass bead treatment is easily performed and, therefore, offers advantages over other chemical treatments for the deposition of silica on reactor internals.
摘要:
A combination downflow contaminant treatment and/or removal bed in combination with a radial flow bed of contaminant sensitive catalyst in a single reactor vessel eliminates unexpected deactivation of contaminant sensitive catalyst. The process of this invention also monitors the entrance of contaminants into the downflow contaminant treatment/removal bed to measure total contaminant loading to avoid unnecessary shut-downs of the reactor vessel during temporary contaminant loadings. This invention is particularly useful for highly sulfur sensitive reforming catalysts that are used in combination with a sulfur sorbent for removal of the sulfur contaminants.
摘要:
A process combination is disclosed to selectively upgrade naphtha to obtain gasoline which is in accordance with current standards for reformulated fuels. A naphtha feedstock is fractionated to selectively direct light naphtha to isomerization or blending, a heart-cut fraction to reforming, and a heavy portion to selective isoparaffin synthesis to yield light and heavy synthesis naphtha and isobutane. The heavy portion of the synthesis naphtha is processed by reforming. Light naphtha may be isomerized, with or without recycle of low-octane components of the product. A gasoline component is blended from light, synthesis, and reformate products from the process combination.
摘要:
An aromatic-hydrocarbon solvent is utilized to purge contaminants, such as sulfur, from a conversion system. Complementary contaminant-removal steps may include oxidation, reduction, and contaminant removal with a sacrificial particulate bed. This solvent purge avoids deactivation of a subsequently loaded contaminant-sensitive catalyst, such as a reforming catalyst selective for dehydrocyclization.