Abstract:
A method is described for rendering char from a biomass fractionator apparatus (BMF char) suitable for addition to soil in high concentrations, the method relying on multiple processes comprising removing detrimental hydrocarbons from BMF char, removing adsorbed gases from BMF char, introducing microorganisms to the BMF char, and adjusting. soil pH.
Abstract:
This invention relates to systems and methods for converting biomass into highly inert carbon. Specifically, some embodiments densify the carbon into anthracite-style carbon aggregations and store it in geologically stable underground deposits. The use of certain embodiments yield a net effect of removing atmospheric carbon via the process of photosynthesis and converting it into hard coal, which can be stored in underground beds that mimic existing coal deposits which are known to be stable for thousands of years.
Abstract:
The present invention provides a fuel injector, comprising a housing having a sealable injector seat; a fuel injector pin disposed within the housing proximate) the injector seat such that the injector seat may be sealed and unsealed by displacing the fuel injector pin; a resilient element biasing the fuel injector pin in an unsealed direction; a piezoelectric actuator disposed within the housing proximal to the fuel injector pin configured to actuate to force the injector pin towards the injector seat to seal the injector seat; and a thermal compensating unit disposed within the housing proximal to the actuator and configured to compensate for thermal expansion or contraction of a component of the fuel injector.
Abstract:
The present invention provides an injector-ignition fuel injection system for an internal combustion engine, comprising an ECU controlling a heated catalyzed fuel injector for heating and catalyzing a next fuel charge, wherein the ECU uses a one firing cycle look-ahead algorithm for controlling fuel injection. The ECU may further incorporate a look-up table, auto-tuning functions and heuristics to compensate for the rapid rotational de-acceleration that occurs near top dead center in lightweight small ultra-high compression engines as may be used with this invention. The ECU may further ramp heat input to the injector in response to engine acceleration requests and, under such circumstances, may extend its look-ahead for up to four firing cycles.
Abstract:
The present invention provides an injector-ignition fuel injector for an internal combustion engine, comprising an input fuel metering system for dispensing a next fuel charge into a pressurizing chamber, a pressurization ram system including a pressurization ram for compressing the fuel charge within the pressurizing chamber, wherein the fuel charge is heated in the pressurization chamber in the presence of a catalyst, and an injector nozzle for injecting the heated catalyzed fuel charge into a combustion chamber of the internal combustion engine.
Abstract:
An air manager system for a metal-air battery cell having an air a cathode, the air manager system producing a flow of air through the air manager system and battery cell and directing a first air flow adjacent to the air cathode to provide reactant air and directing a second air flow adjacent to a portion of the battery cell isolated from the air cathode to provide cooling of the battery cell, preferably near the anode. The air manager system may be used with multiple cell metal-air battery packs. Heat exchange between the isolated air flows may be facilitated, and the reactant air may be recirculated for uniform cooling.
Abstract:
An improved cathode is described which comprises an air-permeable, top coat deposited on the face of the cathode current collector screen. The top coat contains a CO.sub.2 absorber such as magnesium hydroxide which absorbs CO.sub.2 from the air and prevents CO.sub.2 from reacting with or neutralizing the electrolyte. The layer is composed of a dispersion of metal hydroxide in a hydrophobic binder such as polytetrafluoroethylene. The top coat is preferably formed of a first, outer gas flow limiting layer of hydrophobic material absent any CO.sub.2 absorber and a second, inner layer adjacent the current collector of hydrophobic binder containing a CO.sub.2 absorber.
Abstract:
A biomass fractionator and method are described for inputting ground biomass and outputting several vapor streams of bio-intermediate compounds along with syngas and biochar. One such biomass fractionate comprises: means for receiving ground biomass into the system; and a plurality of biomass processing stations including means for heating the biomass and subjecting the biomass to biofractioning, and means for collecting residual carbon and biochar.
Abstract:
Multiple catalytic processing stations couple with a system which produces volatile gas streams from biomass decomposition at discrete increasing temperatures. These catalytic processing stations can be programmed to maximize conversion of biomass to useful renewable fuel components based on input feedstock and desired outputs.
Abstract:
The present invention provides a fuel injector, comprising a housing having a sealable injector seat; a fuel injector pin disposed within the housing proximate to the injector seat such that the injector seat may be sealed and unsealed by displacing the fuel injector pin; a resilient element biasing the fuel injector pin in an unsealed direction; a piezoelectric actuator disposed within the housing proximal to the fuel injector pin configured to actuate to force the injector pin towards the injector seat to seal the injector seat; and a thermal compensating unit disposed within the housing proximal to the actuator and configured to compensate for thermal expansion or contraction of a component of the fuel injector.