摘要:
The present invention provides a polypeptide comprising the isolated amino acid sequence of a pre-ligand assembly domain (PLAD) of a TNF-like receptor. Also provided by this invention is a polypeptide comprising the isolated amino acid sequence of a pre-ligand assembly domain (PLAD), wherein the PLAD is selected from the group consisting of: the PLAD of a TNF-R, the PLAD of p60, the PLAD of p80, the PLAD of Fas (CD95/APO-1), the PLAD of TRAIL receptors, the PLAD of LTβR, the PLAD of CD40, the PLAD of CD30, the PLAD of CD27, the PLAD of HVEM, the PLAD of OX40 and the PLAD of DR4. TNF-R, p60, p80, Fas, TRAIL receptor, LTβR, CD40, CD30, CD27, HVEM, OX40, DR4, TROY, EDAR, XEDAR, DCR3, AITR, 4-1BB, DR3, RANK, TACI, BCMA, DR6, DPG, DR5, DCR1 AND DCR2 are all members of the TNF receptor superfamily or the TNF-like receptor family. The invention also provides the PLAD for other members of the TNF receptor superfamily. The polypeptides of the present invention can be utilized to inhibit oligomerization of members of the TNF receptor superfamily. These polypeptides can also be utilized to inhibit ligand binding to members of the TNF receptor superfamily. The present invention also provides a composition comprising an inhibitor of TNF receptor oligomerization. Further provided by this invention are members of the TNF receptor superfamily that are lacking a PLAD.
摘要:
PU/ZnO nanocomposites are provided wherein the addition of less than 1 vol % 33 nm ZnO nanoparticles into a PU matrix effect a decrease in the Young's Modulus and storage modulus of the polymer, while simultaneously effecting an increase glass transition temperature of the polymer. Detailed experiments are described (e.g., FTIR, DMTA, FESEM and AFM) that suggest that the reaction between hydroxyl groups of the ZnO nanoparticles and isocyanate groups of the polyurethane prepolymer disrupts the self-assembly of the phase separation in PU. Phase separation is responsible for the good mechanical properties of PU. Further, detailed experiments suggest that the increase of the glass transition temperature results from the crosslinking effect of the ZnO nanoparticles.
摘要:
A device comprising a planar integrated circuit that includes an array of electrodes and at least one nanostructure, having a major axis, in electrical contact with at least one electrode. The device forms an interface between an integrated circuit platform and electro-physiologically active cells and is used in manipulate the same.
摘要:
A field grading material including a polymeric matrix provided with a filler. The filler includes a field grading effective amount of particles having at least one dimension smaller than or equal to 100 nm. A device including the field grading material for grading an electric field in high-voltage applications and a method for grading an electric field at a joint or termination of an electric power cable using the field grading material.
摘要:
Methods for maintaining a low shear environment in a bioprocessing system are disclosed. The methods of the invention are useful for extending the time for which a bioprocessing system can be operated thereby maximizing production time and the amount of product that can be recovered from the system.
摘要:
The invention provides a genetic screening method for identifying a transfected cell expressing the polypeptide of interest. The methods allows for high throughput screening of recombinant cells for elevated levels of expression of the polypeptide of interest using methylcellulose comprising fluorescent protein A or G to improve detection and cloning. The invention also provides capture media, formulations and methods of making and using thereof.
摘要:
A field grading material includes a field grading effective amount of a nanoparticle filler distributed in a polymeric matrix, and the nanoparticle filler is heterogeneously distributed in the polymeric matrix.
摘要:
The present invention relates to a new process to direct the growth and direction of polymerization of microtubules using patterned centrosomes or centrosome fragments on a surface. Incorporation a flow force to direct the position and the growth of microtubules, results in a regular network of microtubules. The invention therefore provides a new route to develop both sensing and non-sensing functional microtubule-based nanodevices such as those for nanoscale separation or purification.