摘要:
A light-emitting diode or laser diode is provided which uses a Group III nitride compound semiconductor satisfying the formula (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N, inclusive of 0.ltoreq.x.ltoreq.1, and 0.ltoreq.y.ltoreq.1. A double hetero-junction structure is provided which sandwiches an active layer between layers having wider band gaps than the active layer. The diode has a multi-layer structure which has either a reflecting layer to reflect emission light or a reflection inhibiting layer. The emission light of the diode exits the diode in a direction perpendicular to the double hetero-junction structure. Light emitted in a direction opposite to the light outlet is reflected by the reflecting film toward the direction of the light outlet. Further, the reflection inhibiting film, disposed at or near the light outlet, helps the release of exiting light by minimizing or preventing reflection. As a result, light can be efficiently emitted by the light-generating diode.
摘要翻译:提供一种发光二极管或激光二极管,其使用满足式(Al x Ga 1-x)y In 1-y N的III族氮化物化合物半导体,包括0≤x≤1,0≤y< = 1。 提供了一种双异质结结构,其在活性层之间具有更宽带隙的层之间夹持有源层。 二极管具有多层结构,其具有反射发射光的反射层或反射抑制层。 二极管的发射光在垂直于双异质结结构的方向上离开二极管。 在与光出口相反的方向上发射的光被反射膜反射到光出口的方向。 此外,设置在光出口处或附近的反射抑制膜通过最小化或防止反射来帮助释放出射光。 结果,光可以被发光二极管有效地发射。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:本文公开了(1)使用氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,其中n层n 型氮化镓化合物半导体(Al x Ga 1-x N)是包括低载流子浓度的n层和n < 高载流子浓度的+层,前者与绝缘氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻, ; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,包括相对较低的含有p型杂质的低杂质浓度的i L层 低浓度和高浓度的含有p型杂质的高杂质浓度的i H +层,前者与n层相邻; (3)具有上述两个特征的发光半导体器件和(4)制造n型氮化镓系化合物半导体层的方法(Al x Ga Ga 1-x N),通过气相外延从有机金属化合物具有受控的导电性,通过以可控混合比将含硅气体和其它原料气体一起供给到一起。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:这里公开的是(1)使用其中n型氮化镓化合物半导体(Al x Ga 1-x N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘的氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N) in which the n-layer of n-type gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N) is of double-layer structure including an n-layer of low carrier concentration and an n.sup.+ -layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an i.sub.L -layer of low impurity concentration containing p-type impurities in comparatively low concentration and an i.sub.H -layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:这里公开的是(1)使用其中n型氮化镓化合物半导体(Al x Ga 1-x N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘的氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:这里公开的是(1)使用其中n型氮化镓化合物半导体(Al x Ga 1-x N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlXGa1-xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1-XN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1-xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1-xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:本文公开了(1)一种使用其中n型氮化镓化合物半导体(Al x Ga 1-X N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘的氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:这里公开的是(1)使用其中n型氮化镓化合物半导体(Al x Ga 1-x N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘的氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
摘要:
A semiconductor device having an n-type layer of gallium nitride that is doped with silicon and has a resistively ranging from 3×10−1 &OHgr;cm to 8×10−3 &OHgr;cm or a carrier concentration ranging from 6×1016/cm3 to 3×1018/cm3.
摘要翻译:一种半导体器件,其具有掺杂硅的n型氮化镓层,其电阻范围为3×10 -1Ω〜8×10 -3Ω/ cm或载流子浓度为6×10 16 / cm 3〜3×10 18 / cm 3。
摘要:
A light-emitting semiconductor device using a gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N) having an i.sub.L -layer of insulating gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) containing a low concentration of p-type impurities. An i.sub.H -layer of insulating gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) containing a high concentration of p-type impurities is adjacent to the i.sub.L -layer. An n-layer of n-type gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) of low carrier concentration is adjacent to the i.sub.L -layer. An n.sup.+ -layer of n-type gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) of high carrier concentration doped with n-type impurities is adjacent to the n-layer.
摘要翻译:使用具有含有低浓度p型杂质的绝缘氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的iL层的氮化镓系化合物半导体(Al x Ga 1-x N)的发光半导体装置。 含有高浓度p型杂质的绝缘氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的iH层与iL层相邻。 低载流子浓度的n型氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的n层与iL层相邻。 n型氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的n +层与n型杂质掺杂的高载流子浓度相邻。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.