Abstract:
An apparatus includes a bi-phase mark coded (BMC) input port configured to receive BMC signals from a universal serial bus (USB) cable. The apparatus further includes a threshold adjustment circuit configured to generate a threshold, and a comparator configured to compare an input BMC signal from the BMC input port and the threshold and based on the comparison, generate an adjusted input BMC signal. The threshold adjustment circuit is further configured to adjust the threshold based upon the input BMC signal.
Abstract:
A USB hub integrated circuit device, comprising USB hub logic comprising a plurality USB ports, wherein at least one port comprises a pair of bi-directional transmission channels, wherein for the at least one port two physical layers are provided in parallel, each physical layer being associated with one bidirectional transmission channel, wherein the USB hub logic is further configured to select one of said physical layers for each port depending on a logic condition.
Abstract:
A USB smart hub may provide enhanced battery charging, data storage security, vendor matching, device authentication, data capture/debug, and role switching. The smart hub may include an upstream port, a plurality of downstream ports, a processor, and a memory coupled to the processor for storing USB host stack code and configuration parameters. The smart hub may include a USB hub core having a core to implement a standard USB hub interface. The smart hub may include a plurality of 2:1 multiplexors coupled between the downstream ports, the core downstream ports, and the processor. The processor may control the 2:1 multiplexors. The processor may be configured to detect when a USB device is coupled to a downstream port and to run the USB host stack code and to enumerate the USB device. The processor may provide enhanced features based on the configuration parameters.
Abstract:
An apparatus includes a bi-phase mark coded (BMC) input port configured to receive BMC signals from a universal serial bus (USB) cable. The apparatus further includes a threshold adjustment circuit configured to generate a threshold, and a comparator configured to compare an input BMC signal from the BMC input port and the threshold and based on the comparison, generate an adjusted input BMC signal. The threshold adjustment circuit is further configured to adjust the threshold based upon the input BMC signal.
Abstract:
A system includes a power source, a universal serial bus (USB) type C port, and a multi-protocol adaptive circuit. The multi-protocol adaptive circuit may be configured to determine that a USB element has attached to the USB type C port, to determine whether to apply a USB type C charging protocol to the USB element or a legacy USB type A charging protocol to the USB element, and to provide power from the power source to the USB element.
Abstract:
A USB hub includes a plurality of downstream ports; at least one dual mode port, the dual mode port configured to be switchable from a downstream port to an upstream port; and host detection circuitry for detecting whether, when operating as an upstream port, a host is connected.
Abstract:
A USB smart hub may provide enhanced battery charging, data storage security, vendor matching, device authentication, data capture/debug, and role switching. The smart hub may include an upstream port, a plurality of downstream ports, a processor, and a memory coupled to the processor for storing USB host stack code and configuration parameters. The smart hub may include a USB hub core having a core to implement a standard USB hub interface. The smart hub may include a plurality of 2:1 multiplexors coupled between the downstream ports, the core downstream ports, and the processor. The processor may control the 2:1 multiplexors. The processor may be configured to detect when a USB device is coupled to a downstream port and to run the USB host stack code and to enumerate the USB device. The processor may provide enhanced features based on the configuration parameters.
Abstract:
A USB hub includes a plurality of downstream ports; at least one dual mode port, the dual mode port configured to be switchable from a downstream port to an upstream port; and host detection circuitry for detecting whether, when operating as an upstream port, a host is connected.
Abstract:
A USB hub has a USB hub controller, and an embedded controller, a USB port connector and associated port power control device and a controllable bypass switch providing a supply voltage to the USB port connector when the embedded controller enables it, a controllable voltage supply regulator unit providing a first output voltage which can be turned off and supplied to the port power control device, and a programmable current monitor circuit with a current sensor providing a second supply voltage to the monitor circuit, wherein during a low power mode, the USB hub controller and any port power control device are turned off and the monitor circuit is configured to provide the second supply voltage through the sensor and bypass switch to the USB connector and detects a current when a USB device is plugged into the USB port connector and wakes up the embedded controller.
Abstract:
A USB hub includes a plurality of downstream ports; at least one dual mode port, the dual mode port configured to be switchable from a downstream port to an upstream port; and host detection circuitry for detecting whether, when operating as an upstream port, a host is connected.