Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid-state lighting devices (SSLDs) including a carrier substrate with conductors and methods of manufacturing SSLDs. The conductors can provide (a) improved thermal conductivity between a solid-state light emitter (SSLE) and a package substrate and (b) improved electrical conductivity for the SSLE. In one embodiment, the conductors have higher thermal and electrical conductivities than the carrier substrate supporting the SSLE.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.