Abstract:
Solid state lighting devices and associated methods of thermal sinking are described below. In one embodiment, a light emitting diode (LED) device includes a heat sink, an LED die thermally coupled to the heat sink, and a phosphor spaced apart from the LED die. The LED device also includes a heat conduction path in direct contact with both the phosphor and the heat sink. The heat conduction path is configured to conduct heat from the phosphor to the heat sink.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lighting devices and associated methods of thermal sinking are described below. In one embodiment, a light emitting diode (LED) device includes a heat sink, an LED die thermally coupled to the heat sink, and a phosphor spaced apart from the LED die. The LED device also includes a heat conduction path in direct contact with both the phosphor and the heat sink. The heat conduction path is configured to conduct heat from the phosphor to the heat sink.
Abstract:
Solid state lighting devices and associated methods of thermal sinking are described below. In one embodiment, a light emitting diode (LED) device includes a heat sink, an LED die thermally coupled to the heat sink, and a phosphor spaced apart from the LED die. The LED device also includes a heat conduction path in direct contact with both the phosphor and the heat sink. The heat conduction path is configured to conduct heat from the phosphor to the heat sink.
Abstract:
Several embodiments of semiconductor systems and associated methods of color corrections are disclosed herein. In one embodiment, a method for producing a light emitting diode (LED) includes forming an (LED) on a substrate, measuring a base emission characteristic of the formed LED, and selecting a phosphor based on the measured base emission characteristic of the formed LED such that a combined emission from the LED and the phosphor at least approximates white light. The method further includes introducing the selected phosphor onto the LED via, for example, inkjet printing.
Abstract:
Solid state lighting devices and associated methods of thermal sinking are described below. In one embodiment, a light emitting diode (LED) device includes a heat sink, an LED die thermally coupled to the heat sink, and a phosphor spaced apart from the LED die. The LED device also includes a heat conduction path in direct contact with both the phosphor and the heat sink. The heat conduction path is configured to conduct heat from the phosphor to the heat sink.
Abstract:
Several embodiments of semiconductor systems and associated methods of color corrections are disclosed herein. In one embodiment, a method for producing a light emitting diode (LED) includes forming an (LED) on a substrate, measuring a base emission characteristic of the formed LED, and selecting a phosphor based on the measured base emission characteristic of the formed LED such that a combined emission from the LED and the phosphor at least approximates white light. The method further includes introducing the selected phosphor onto the LED via, for example, inkjet printing.
Abstract:
Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
Abstract:
Solid state lighting (SSL) devices and methods of manufacturing SSL devices are disclosed herein. In one embodiment, an SSL device comprises a support having a surface and a solid state emitter (SSE) at the surface of the support. The SSE can emit a first light propagating along a plurality of first vectors. The SSL device can further include a converter material over at least a portion of the SSE. The converter material can emit a second light propagating along a plurality of second vectors. Additionally, the SSL device can include a lens over the SSE and the converter material. The lens can include a plurality of diffusion features that change the direction of the first light and the second light such that the first and second lights blend together as they exit the lens. The SSL device can emit a substantially uniform color of light.
Abstract:
Several embodiments of semiconductor systems and associated methods of color corrections are disclosed herein. In one embodiment, a method for producing a light emitting diode (LED) includes forming an (LED) on a substrate, measuring a base emission characteristic of the formed LED, and selecting a phosphor based on the measured base emission characteristic of the formed LED such that a combined emission from the LED and the phosphor at least approximates white light. The method further includes introducing the selected phosphor onto the LED via, for example, inkjet printing.