Abstract:
Some embodiments disclose a gate stack having a gate (e.g., polysilicon (poly) material) horizontally between shallow trench isolations (STIs), a tungsten silicide (WSix) material over the gate and the STIs, and a tungsten silicon nitride (WSiN) material on a top surface of the WSix material. Some embodiments disclose a gate stack having a gate between STIs, a first WSix material over the gate and the STIs, a WSiN interlayer material on a top surface of the first WSix material, and a second WSix material on a top surface of the WSiN interlayer material. Additional embodiments are disclosed.
Abstract:
Described are methods for forming multi-component conductive structures for semiconductor devices. The multi-component conductive structures can include a common metal, present in different percentages between the two components of the conductive structures. As described example, multiple components can include multiple ruthenium materials having different percentages of ruthenium. In some applications, at least a portion of one of the ruthenium material components will be sacrificial, and removed in subsequent processing.
Abstract:
Some embodiments disclose a gate stack having a gate (e.g., polysilicon (poly) material) horizontally between shallow trench isolations (STIs), a tungsten silicide (WSix) material over the gate and the STIs, and a tungsten silicon nitride (WSiN) material on a top surface of the WSix material. Some embodiments disclose a gate stack having a gate between STIs, a first WSix material over the gate and the STIs, a WSiN interlayer material on a top surface of the first WSix material, and a second WSix material on a top surface of the WSiN interlayer material. Additional embodiments are disclosed.
Abstract:
Described are methods for forming multi-component conductive structures for semiconductor devices. The multi-component conductive structures can include a common metal, present in different percentages between the two components of the conductive structures. As described example, multiple components can include multiple ruthenium materials having different percentages of ruthenium. In some applications, at least a portion of one of the ruthenium material components will be sacrificial, and removed in subsequent processing.
Abstract:
Described are methods for forming multi-component conductive structures for semiconductor devices. The multi-component conductive structures can include a common metal, present in different percentages between the two components of the conductive structures. As described example, multiple components can include multiple ruthenium materials having different percentages of ruthenium. In some applications, at least a portion of one of the ruthenium material components will be sacrificial, and removed in subsequent processing.
Abstract:
Described are methods for forming multi-component conductive structures for semiconductor devices. The multi-component conductive structures can include a common metal, present in different percentages between the two components of the conductive structures. As described example, multiple components can include multiple ruthenium materials having different percentages of ruthenium. In some applications, at least a portion of one of the ruthenium material components will be sacrificial, and removed in subsequent processing.
Abstract:
Some embodiments disclose a gate stack having a gate (e.g., polysilicon (poly) material) horizontally between shallow trench isolations (STIs), a tungsten silicide (WSix) material over the gate and the STIs, and a tungsten silicon nitride (WSiN) material on a top surface of the WSix material. Some embodiments disclose a gate stack having a gate between STIs, a first WSix material over the gate and the STIs, a WSiN interlayer material on a top surface of the first WSix material, and a second WSix material on a top surface of the WSiN interlayer material. Additional embodiments are disclosed.
Abstract:
Methods of forming multi-tiered semiconductor devices are described, along with apparatuses that include them. In one such method, a silicide is formed in a tier of silicon, the silicide is removed, and a device is formed at least partially in a void that was occupied by the silicide. One such apparatus includes a tier of silicon with a void between tiers of dielectric material. Residual silicide is on the tier of silicon and/or on the tiers of dielectric material and a device is formed at least partially in the void. Additional embodiments are also described.