SENSE LINE AND CELL CONTACT
    2.
    发明公开

    公开(公告)号:US20230345708A1

    公开(公告)日:2023-10-26

    申请号:US17729450

    申请日:2022-04-26

    CPC classification number: H01L27/10885 H01L27/10888 H01L27/10897

    Abstract: Methods, apparatuses, and systems related to a sense line and cell contact for a semiconductor structure are described. An example apparatus includes a first source/drain region and a second source/drain region, where the first source/drain region and the second source/drain region are separated by a channel, a gate opposing the channel, a sense line material coupled to the first source/drain region by a cell contact, where the cell contact is made from a combination of a first polysilicon material and a second polysilicon material, and a storage node coupled to the second source/drain region.

    METHODS OF FORMING MICROELECTRONIC DEVICES, AND RELATED MICROELECTRONIC DEVICES AND ELECTRONIC SYSTEMS

    公开(公告)号:US20230005932A1

    公开(公告)日:2023-01-05

    申请号:US17364281

    申请日:2021-06-30

    Abstract: A method of forming a microelectronic device comprises forming a first microelectronic device structure comprising a first semiconductor structure, a first isolation material over the first semiconductor structure, and first conductive routing structures over the first semiconductor structure and surrounded by the first isolation material. A second microelectronic device structure comprising a second semiconductor structure and a second isolation material over the second semiconductor structure is formed. The second isolation material is bonded to the first isolation material to attach the second microelectronic device structure to the first microelectronic device structure. Memory cells comprising portions of the second semiconductor structure are formed after attaching the second microelectronic device structure to the first microelectronic device structure. Control logic devices including transistors comprising portions of the first semiconductor structure are formed after forming the memory cells. Microelectronic devices, electronic systems, and additional methods are also described.

    CONDUCTIVE PAD ON A THROUGH-SILICON VIA

    公开(公告)号:US20240379596A1

    公开(公告)日:2024-11-14

    申请号:US18660210

    申请日:2024-05-09

    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate having a front side and a back side opposite the front side. A through via extends entirely through the substrate. The through via includes a protruding portion that extends beyond the back side of the substrate. A layer of silicon carbon nitride is disposed at the back side of the substrate and along sidewalls of the protruding portion of the through via. A layer of oxide is disposed at the back side of the substrate and at least partially surrounding the protruding portion of the through via. A conductive pad is disposed at a coupling surface of the through via and at least partially extending through the layer of oxide. As a result, a reliable and cost-efficient semiconductor device can be assembled.

    SEMICONDUCTOR DEVICE CIRCUITRY FORMED FROM REMOTE RESERVOIRS

    公开(公告)号:US20240071989A1

    公开(公告)日:2024-02-29

    申请号:US18237202

    申请日:2023-08-23

    Abstract: This document discloses techniques, apparatuses, and systems for semiconductor device circuitry formed from remote reservoirs. A semiconductor assembly includes a first semiconductor die with a layer of dielectric material having an opening. The first semiconductor die further includes a reservoir of conductive material having a first portion located adjacent to the opening, a second portion remote from the opening, and a third portion coupling the first portion and the second portion. A second semiconductor die includes a layer of dielectric material and a contact pad corresponding to the opening. The reservoir of conductive material is heated to volumetrically expand the second portion into the third portion, the third portion into the first portion, and the first portion through the opening to form an interconnect electrically coupling the first semiconductor die and the second semiconductor die at the contact pad. In this way, a connected semiconductor device may be assembled.

    Array Of Vertical Transistors And Method Used In Forming An Array Of Vertical Transistors

    公开(公告)号:US20230014320A1

    公开(公告)日:2023-01-19

    申请号:US17947401

    申请日:2022-09-19

    Abstract: An array of vertical transistors comprises spaced pillars of individual vertical transistors that individually comprise an upper source/drain region, a lower source/drain region, and a channel region vertically there-between. The upper source/drain region comprises a conductor oxide material in individual of the pillars. The channel region comprises an oxide semiconductor material in the individual pillars. The lower source/drain region comprises a first conductive oxide material in the individual pillars atop and directly against a second conductive oxide material in the individual pillars. Horizontally-elongated and spaced conductor lines individually interconnect a respective multiple of the vertical transistors in a column direction. The conductor lines individually comprise the second conductive oxide material atop and directly against metal material. The first conductive oxide material, the second conductive oxide material, and the metal material comprise different compositions relative one another. The second conductive oxide material of the conductor lines is below and directly against the second conductive oxide material of the lower source/drain region of the individual pillars of the respective multiple vertical transistors. Horizontally-elongated and spaced conductive gate lines are individually operatively aside the oxide semiconductor material of the channel region of the individual pillars and individually interconnect a respective plurality of the vertical transistors in a row direction. A conductive structure is laterally-between and spaced from immediately-adjacent of the spaced conductor lines in the row direction. The conductive structures individually comprise a top surface that is higher than a top surface of the metal material of the conductor lines. Other embodiments, including method, are disclosed.

    Array of vertical transistors and method used in forming an array of vertical transistors

    公开(公告)号:US11488981B2

    公开(公告)日:2022-11-01

    申请号:US16934607

    申请日:2020-07-21

    Abstract: An array of vertical transistors comprises spaced pillars of individual vertical transistors that individually comprise an upper source/drain region, a lower source/drain region, and a channel region vertically there-between. The upper source/drain region comprises a conductor oxide material in individual of the pillars. The channel region comprises an oxide semiconductor material in the individual pillars. The lower source/drain region comprises a first conductive oxide material in the individual pillars atop and directly against a second conductive oxide material in the individual pillars. Horizontally-elongated and spaced conductor lines individually interconnect a respective multiple of the vertical transistors in a column direction. The conductor lines individually comprise the second conductive oxide material atop and directly against metal material. The first conductive oxide material, the second conductive oxide material, and the metal material comprise different compositions relative one another. The second conductive oxide material of the conductor lines is below and directly against the second conductive oxide material of the lower source/drain region of the individual pillars of the respective multiple vertical transistors. Horizontally-elongated and spaced conductive gate lines are individually operatively aside the oxide semiconductor material of the channel region of the individual pillars and individually interconnect a respective plurality of the vertical transistors in a row direction. A conductive structure is laterally-between and spaced from immediately-adjacent of the spaced conductor lines in the row direction. The conductive structures individually comprise a top surface that is higher than a top surface of the metal material of the conductor lines. Other embodiments, including method, are disclosed.

    METHODS OF FORMING MICROELECTRONIC DEVICES, AND RELATED MICROELECTRONIC DEVICES, MEMORY DEVICES, AND ELECTRONIC SYSTEMS

    公开(公告)号:US20220059469A1

    公开(公告)日:2022-02-24

    申请号:US16999817

    申请日:2020-08-21

    Abstract: A method of forming a microelectronic device comprises forming a conductive shielding material over a conductive shielding structure and a first dielectric structure horizontally adjacent the conductive shielding structure. A second dielectric structure is formed on first dielectric structure and horizontally adjacent the conductive shielding material. The conductive shielding material and the second dielectric structure are patterned to form fin structures extending in parallel in a first horizontal direction. Each of the fin structures comprises two dielectric end structures integral with remaining portions of the second dielectric structure, and an additional conductive shielding structure interposed between the two dielectric end structures in the first horizontal direction. Conductive lines are formed to extend in parallel in the first horizontal direction and to horizontally alternate with the fin structures in a second horizontal direction orthogonal to the first horizontal direction. Microelectronic devices, memory devices, and electronic systems are also described.

    Array Of Vertical Transistors And Method Used In Forming An Array Of Vertical Transistors

    公开(公告)号:US20220028903A1

    公开(公告)日:2022-01-27

    申请号:US16934607

    申请日:2020-07-21

    Abstract: An array of vertical transistors comprises spaced pillars of individual vertical transistors that individually comprise an upper source/drain region, a lower source/drain region, and a channel region vertically there-between. The upper source/drain region comprises a conductor oxide material in individual of the pillars. The channel region comprises an oxide semiconductor material in the individual pillars. The lower source/drain region comprises a first conductive oxide material in the individual pillars atop and directly against a second conductive oxide material in the individual pillars. Horizontally-elongated and spaced conductor lines individually interconnect a respective multiple of the vertical transistors in a column direction. The conductor lines individually comprise the second conductive oxide material atop and directly against metal material. The first conductive oxide material, the second conductive oxide material, and the metal material comprise different compositions relative one another. The second conductive oxide material of the conductor lines is below and directly against the second conductive oxide material of the lower source/drain region of the individual pillars of the respective multiple vertical transistors. Horizontally-elongated and spaced conductive gate lines are individually operatively aside the oxide semiconductor material of the channel region of the individual pillars and individually interconnect a respective plurality of the vertical transistors in a row direction. A conductive structure is laterally-between and spaced from immediately-adjacent of the spaced conductor lines in the row direction. The conductive structures individually comprise a top surface that is higher than a top surface of the metal material of the conductor lines. Other embodiments, including method, are disclosed.

Patent Agency Ranking