摘要:
A semiconductor process test structure comprises an electrode, a charge-trapping layer, and a diffusion region. The test structure is a capacitor-like structure in which the charge-trapping layer will trap charges during various processing steps. Gate-induced drain leakage (GIDL) measurement techniques can then be used to characterize the charging status of the test structure.
摘要:
A memory array comprising vertical memory cells does not require any isolation layers between cells. Thus, a very compact, high density memory array can be achieved. Each memory cell in the memory array is configured to store 4 bits of data per cell. Multi level charge techniques can be used to increase the number of bit per cell and achieve further increased density for the memory array.
摘要:
A memory array comprising vertical memory cells does not require any isolation layers between cells. Thus, a very compact, high density memory array can be achieved. Each memory cell in the memory array is configured to store 4 bits of data per cell. Multi-level charge techniques can be used to increase the number of bit per cell and achieve further increased density for the memory array.
摘要:
An operating method of a memory array is provided. The operating method includes performing a programming operation. The programming operation is performed by applying a first voltage to a bit line of the memory array and a second voltage to a plurality of word lines of the memory array to cause simultaneously programming a plurality of selected memory cells in the memory array.
摘要:
An operating method of a memory array is provided. The operating method includes performing a programming operation. The programming operation is performed by applying a first voltage to a bit line of the memory array and a second voltage to a plurality of word lines of the memory array to cause simultaneously programming a plurality of selected memory cells in the memory array
摘要:
A semiconductor process test structure comprises an electrode, a charge-trapping layer, and a diffusion region. The test structure is a capacitor-like structure in which the charge-trapping layer will trap charges during various processing steps. Gate-induced drain leakage (GIDL) measurement techniques can then be used to characterize the charging status of the test structure.
摘要:
A memory array comprising vertical memory cells does not require any isolation layers between cells. Thus, a very compact, high density memory array can be achieved. Each memory cell in the memory array is configured to store 4 bits of data per cell. Multi-level charge techniques can be used to increase the number of bit per cell and achieve further increased density for the memory array.
摘要:
An Assisted Charge (AC) Memory cell includes a transistor that includes, for example, a p-type substrate with an n+ source region and an n+ drain region implanted on the p-type substrate. A gate electrode can be formed over the substrate and portions of the source and drain regions. The gate electrode can include a trapping layer. The trapping layer can be treated as electrically split into two sides. One side can be referred to as the “AC-side” and can be fixed at a high voltage by trapping electrons within the layer. The electrons are referred to as assisted charges. The other side of can be used to store data and is referred to as the “data-side.” The abrupt electric field between AC-side and the data-side can enhance programming efficiency.
摘要:
A memory array comprising vertical memory cells does not require any isolation layers between cells. Thus, a very compact, high density memory array can be achieved. Each memory cell in the memory array is configured to store 4 bits of data per cell. Multi-level charge techniques can be used to increase the number of bit per cell and achieve further increased density for the memory array.
摘要:
A semiconductor process test structure comprises a gate electrode, a charge-trapping layer, and a diffusion region. The test structure is a capacitor-like structure in which the charge-trapping layer will trap charges during various processing steps. A CV measurement can then be used to detect whether a Vfb shift has occurred. If the process step resulted in a charge effect, then the induced charge will not be uniform. If the charging of the test structure is not uniform, then there will not be a Vfb shift. A delayed inversion point technique can then be used to monitor the charging status.