摘要:
Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxynitride layer is formed over the transparent substrate. The metal oxynitride layer includes a first metal and a second metal. A reflective layer is formed over the transparent substrate.
摘要:
Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxynitride layer is formed over the transparent substrate. The metal oxynitride layer includes a first metal and a second metal. A reflective layer is formed over the transparent substrate.
摘要:
Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxide layer is formed over the transparent substrate. The metal oxide layer includes a first element, a second element, and a third element. A reflective layer is formed over the transparent substrate. The first element may include tin or zinc. The second element and the third element may each include tin, zinc, antimony, silicon, strontium, titanium, niobium, zirconium, magnesium, aluminum, yttrium, lanthanum, hafnium, or bismuth. The metal oxide layer may also include nitrogen.
摘要:
Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxide layer is formed over the transparent substrate. The metal oxide layer includes a first element, a second element, and a third element. A reflective layer is formed over the transparent substrate. The first element may include tin or zinc. The second element and the third element may each include tin, zinc, antimony, silicon, strontium, titanium, niobium, zirconium, magnesium, aluminum, yttrium, lanthanum, hafnium, or bismuth. The metal oxide layer may also include nitrogen.
摘要:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
摘要:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
摘要:
A method for making low emissivity panels, comprising forming highly smooth layers of silver on highly smooth layers of base or seed films. The highly smooth layers can be achieved by collimated sputtering, lowering the angular distribution of the sputtered particles when reaching the substrate.
摘要:
A method for forming a transparent conductive oxide (TCO) film for use in a TFPV solar device comprises the formation of a tin oxide film doped with between about 5 volume % and about 40 volume % antimony (ATO). Advantageously, the Sb concentration generally ranges from about 15 volume % to about 20 volume % and more advantageously, the Sb concentration is about 19 volume %. The ATO films exhibited almost no change in transmission characteristics between about 300 nm and about 1100 nm or resistivity after either a 15 hour exposure to water or an anneal in air for 8 minutes at 650 C, which indicated the excellent durability. Control sample of Al doped zinc oxide (AZO) exhibited degradation of resistivity for both a 15 hour exposure to water and an anneal in air for 8 minutes at 650 C.
摘要:
A method for forming a transparent conductive oxide (TCO) film for use in a TFPV solar device comprises the formation of a tin oxide film doped with between about 5 volume % and about 40 volume % antimony (ATO). Advantageously, the Sb concentration generally ranges from about 15 volume % to about 20 volume % and more advantageously, the Sb concentration is about 19 volume %. The ATO films exhibited almost no change in transmission characteristics between about 300 nm and about 1100 nm or resistivity after either a 15 hour exposure to water or an anneal in air for 8 minutes at 650 C, which indicated the excellent duarability. Control sample of Al doped zinc oxide (AZO) exhibited degradation of resistivity for both a 15 hour exposure to water and an anneal in air for 8 minutes at 650 C.
摘要:
A method for forming and protecting high quality bismuth oxide films comprises depositing a transparent thin film on a substrate comprising one of Si, alkali metals, or alkaline earth metals. The transparent thin film is stable at room temperature and at higher temperatures and serves as a diffusion barrier for the diffusion of impurities from the substrate into the bismuth oxide. Reactive sputtering, sputtering from a compound target, or reactive evaporation are used to deposit a bismuth oxide film above the diffusion barrier.