摘要:
A top-fired reformer box is provided. The top-fired reformer box includes a burner row, a tube row, a reformer tunnel including a closed end, an open end, and a plurality of tunnel ports formed along a side wall of the reformer tunnel, the plurality of tunnel ports including a one or more tunnel port located along the side of the tunnel, and a flow resistor positioned at least one tunnel port applying a flow resistance for flue gas entering the reformer tunnel via the at least one tunnel port such that uniform flow is achieved within the reformer tunnel.
摘要:
A top-fired reformer box is provided. The top-fired reformer box includes a burner row, a tube row, a reformer tunnel including a closed end, an open end, and a plurality of tunnel ports formed along a side wall of the reformer tunnel, the plurality of tunnel ports including a one or more tunnel port located along the side of the tunnel, and a flow resistor positioned at least one tunnel port applying a flow resistance for flue gas entering the reformer tunnel via the at least one tunnel port such that uniform flow is achieved within the reformer tunnel.
摘要:
The present disclosure relates to a furnace comprising:
a plurality of groupings, wherein each grouping in the furnace is adjacent to each other and separated by a gap, wherein each grouping comprises: (a) one row of tubes and optionally additional rows of tubes comprising a plurality of tubes containing a catalyst for converting a gaseous feed, wherein each row of tubes is parallel to each other; (b) at least two rows of burners comprising having a first and second row of outer burners and optionally additional rows of burners comprising a plurality of burners, and as described herein, (c) wherein the plurality of burners within each grouping is configured such that the ratio of B/G is greater than 1.3 and the ratio of B/W is less than 1.3, wherein W, B and G are as defined herein.
摘要:
An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.
摘要:
A system and a method for allocating Sounding Reference Signal (SRS) resources are provided in the present invention, the method includes: an e-Node-B (eNB) allocating a SRS bandwidth with 4n Resource Blocks (RBs) to a terminal, and equally dividing a time domain sequence of a SRS into t portions in the SRS bandwidth; the eNB configuring a time domain RePetition Factor (RPF) used by the UE, and the eNB configuring the UE to use one or more cyclic shifts in L cyclic shifts for each UE; then the eNB notifying the UE of a value of the time domain RPF, a location of a used frequency comb and a used cyclic shift by signaling, wherein n is a positive integer; the RPF satisfies a following condition: 48 × n RPF can be exactly divided by 12; t is an integer by which 48 × n RPF can be exactly divided; and L≦t.
摘要:
According to one embodiment, a structure for monitoring a process step may include an etch stop layer (102) formed on a substrate (104) and a trench emulation layer (106) formed over an etch stop layer (102). Monitor trenches (108) may be formed through a trench emulation layer (106) that terminate at an etch stop layer (102). Monitor trenches (108) may have a depth equal to a trench emulation layer (106) thickness. A trench emulation layer (106) thickness may be subject to less variation than a substrate trench depth. A monitor structure (100) may thus be used to monitor features formed by one or more process steps that may vary according to trench depth. Such process steps may include a shallow trench isolation insulator chemical mechanical polishing step. In addition, or alternatively, a monitor structure (100) may be formed on a non-semiconductor-on-insulator (SOI) wafer, but include SOI features, providing a less expensive alternative to monitoring some SOI process steps.
摘要:
The present invention relates to reactor tubes packed with a catalyst system employed to deliberately bias process gas flow toward the hot tube segment and away from the cold segment in order to reduce the circumferential tube temperature variation.
摘要:
Methods of ONO integration into MOS flow are provided. In one embodiment, the method comprises: (i) forming a pad dielectric layer above a MOS device region of a substrate; and (ii) forming a patterned dielectric stack above a non-volatile device region of the substrate, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer, the charge-trapping layer comprising multiple layers including a first nitride layer formed on the tunnel layer and a second nitride layer, wherein the first nitride layer is oxygen rich relative to the second nitride layer. Other embodiments are also described.
摘要:
A tubular reactor and method for producing a product mixture in a tubular reactor where the tubular reactor comprises an internal catalytic insert having orifices for forming fluid jets for impinging the fluid on the tube wall. Jet impingement is used to improve heat transfer between the fluid in the tube and the tube wall in a non-adiabatic reactor. The tubular reactor and method may be used for endothermic reactions such as steam methane reforming and for exothermic reactions such as methanation.
摘要:
Disclosed is a regenerator, a regeneration process, and a liquid polymer mixture for periodic cooling, storing, and heating of atmospheric gas. The regenerator, the regeneration process, and the liquid polymer mixture involve a liquid polymer that remains in contact with a thermally conductive solid material during a first operational period and a second operational period of a regeneration process.