摘要:
A bottom mount refrigerator is provided including a thermal battery or phase change material positioned within the refrigerator or freezer in order to increase energy efficiency and compartment sizes of the refrigerator. The thermal battery can be used with an ice maker to aid in removing heat from the water in the ice maker to produce ice. Furthermore, the phase change material or thermal battery may be used with a thermoelectric cooler to aid in ice production. The phase change material may be tuned to various temperatures according to the desired use of the phase change material, as well as the location of the thermal battery or phase change material. Other embodiments include positioning the phase change material in the liner of the compartments or in thermal storage units in order to further increase the energy efficiency of the refrigerator.
摘要:
According to an embodiment of the disclosure, an encapsulated phase change material (PCM) heat sink is provided. The encapsulated PCM heat sink includes a lower shell, an upper shell, an encapsulated phase change material, and an internal matrix. The internal matrix includes a space that is configured to receive the encapsulated phase change material. Thermal energy is transferrable between the encapsulated phase change material and at least one of the lower shell and the upper shell. For a particular embodiment, the upper shell is coupled to the lower shell at room temperature and room pressure.
摘要:
A bottom mount refrigerator is provided including a thermal battery or phase change material positioned within the refrigerator or freezer in order to increase energy efficiency and compartment sizes of the refrigerator. The thermal battery can be used with an ice maker to aid in removing heat from the water in the ice maker to produce ice.Furthermore, the phase change material or thermal battery may be used with a thermoelectric cooler to aid in ice production. The phase change material may be tuned to various temperatures according to the desired use of the phase change material, as well as the location of the thermal battery or phase change material. Other embodiments include positioning the phase change material in the liner of the compartments or in thermal storage units in order to further increase the energy efficiency of the refrigerator.
摘要:
The disclosure relates to heat engines that operate using low temperature differentials. A Stirling engine is modified to provide a new heat engine that has no contained working fluid. The new heat engine flexible cylinders and the pistons are moved vertically upward by cables and vertically downward by gravity.
摘要:
This invention relates generally to the treatment of NOx in combustion flue gas. In certain embodiments, the invention relates to the use of a regenerative heat exchanger (RHE) to convert urea to ammonia in a side stream of flue gas. Ammonia and/or other urea decomposition products exit the heat exchanger, are mixed with the rest of the flue gas, and enter a selective catalytic reduction (SCR) unit for reduction of NOx in the flue gas. The use of an RHE significantly improves the thermal efficiency of the overall process. More particularly, in certain embodiments, the regenerative heat exchanger is a dual chamber RHE.
摘要:
Support assembly for supporting heat regeneration checker work in a hot blast stove for a blast furnace. The assembly includes a supporting grid for supporting the checker work, and supporting columns for supporting the supporting grid. The assembly includes a cast iron material. The cast iron material includes a ferritic matrix and a dispersion of graphite particles wherein the shape of the graphite particles is substantially vermicular or nodular.
摘要:
This invention relates generally to the treatment of NOx in combustion flue gas. In certain embodiments, the invention relates to the use of a regenerative heat exchanger (RHE) to convert urea to ammonia in a side stream of flue gas. Ammonia and/or other urea decomposition products exit the heat exchanger, are mixed with the rest of the flue gas, and enter a selective catalytic reduction (SCR) unit for reduction of NOx in the flue gas. The use of an RHE significantly improves the thermal efficiency of the overall process. More particularly, in certain embodiments, the regenerative heat exchanger is a dual chamber RHE.
摘要:
Recuperative heat exchangers or regenerative heat exchangers are used for the thermal decomposition of N2O in N2O-containing gases. The process for the thermal decomposition of N2O in N2O-containing gases at from 800 to 1200° C. comprises passing the N2O-containing gas through one or more recuperative heat exchangers or regenerative heat exchangers in such a way that when the gas to be reacted is passed through a charge of heat transfer material it is heated to a temperature in the range from 800 to 1200° C. and the N2O present is decomposed thermally, and cooling the reacted gas by heat exchange so as to heat the charge of heat transfer material and the gas to be reacted.
摘要:
Regenerative thermal oxidizer in which a gas such as contaminated air is first passed through a hot heat-exchange bed and into a communicating high temperature oxidation (combustion) chamber, and then through a relatively cool second heat exchange bed. The apparatus includes a number of internally insulated, ceramic filled heat recovery columns topped by an internally insulated combustion chamber. Process air is fed into the oxidizer through an inlet manifold containing a number of hydraulically or pneumatically operated flow control valves (such as poppet valves). The air is then directed into the heat exchange media which contains "stored" heat from the previous recovery cycle. The process air is heated to near oxidation temperatures. Oxidation is completed as the flow passes through the combustion chamber, where one or more burners are located. The gas is maintained at the operating temperature for an amount of time sufficient for completing destruction of the VOC's. From the combustion chamber, the gas flows vertically downward through another column containing heat exchange media, thereby storing heat in the media for use in a subsequent inlet cycle when the flow control valves reverse. The resulting clean air is directed via an outlet valve through an outlet manifold and released to atmosphere at a slightly higher temperature than inlet, or is recirculated back to the oxidizer inlet. An integrated VOC entrapment chamber entraps any VOC's that leak out during cycling, and recycles them back to the oxidizer inlet for further processing.
摘要:
A high performance, low cost, regenerator/heat enthalpy exchanger matrix or bed. The bed consist of a matrix of tensioned sheets with flow channels therethrough. The matrix is of the parallel plate type with high porosity, and narrow, uniform, unobstructed channels. The bed is ideal for near room temperature regenerator applications. The elastomer bed regenerative heat transfer structures are suitably used in heat and moisture exchangers which are used on humans to reduce moisture and heat loss during breathing.