摘要:
A powder filler is stuffed in a filler space defined between a housing and a gas sensing element so as to airtightly seal a clearance between the housing and the gas sensing element. The powder filler contains grains whose diameter is in a range from 80 μm to 5,000 μm when measured before being stuffed into the filler space. A weight percentage of the grains having the diameter of 80 μm to 5,000 μm is equal to or larger than 80% with respect to an overall weight of the powder filler.
摘要:
An active liquid applicator is provided which is designed to coat a surface of an electronic parts such as an oxygen sensor with an active liquid for forming an electrode. The liquid applicator includes a nozzle head and a nozzle tube. The nozzle tube has disposed therein a pearmable member which produces capillary attraction of an active liquid thereinto and feed it to the nozzle head, thereby enabling formation of a thin active film on the electronic part which has the thickness controllable with high accuracy.
摘要:
A second protective layer is a ceramic porous protective layer comprising coarse particles and fine particles structurally arranged in such a manner that interparticle cavities formed between the coarse particles are filled with the fine particles. At least either of the coarse particles and the fine particles contain at least one selected from the group consisting of &ggr;-Al2O3, &thgr;-Al2O3, &dgr;-Al2O3 and solid solution having the same crystal structure as those of &ggr;-Al2O3, &thgr;-Al2O3, &dgr;-Al2O3.
摘要翻译:第二保护层是包括粗颗粒和细颗粒的陶瓷多孔保护层,其结构地布置成使得在粗颗粒之间形成的颗粒间隙被细颗粒填充。 粗颗粒和细颗粒中的至少任一种含有选自γ-Al 2 O 3,θ-Al 2 O 3,δ-Al 2 O 3和与γ-Al 2 O 3,θ-Al 2 O 3具有相同晶体结构的固溶体中的至少一种 ,Δ-Al2O3
摘要:
A sensor element has a solid electrolyte body holding a reference gas side electrode and a measurement gas side electrode on surfaces thereof. The measurement gas side electrode is covered with a porous protective layer including a component as a lead getter, which reacts with lead contained in measurement gas. Accordingly, lead is removed from measurement gas by the protective layer not to be attached to the measurement gas side electrode. As a result, the sensor element can be used in measurement gas containing lead, without deteriorating responsibility and output thereof.
摘要:
An oxygen concentration detecting device comprises a solid electrolyte body, inner and outer electrodes formed on the opposite sides of the solid electrolyte body, and a protective layer formed on the outer electrode and comprised of coarse particles and fine particles mutually bonded through an inorganic binder while substantially keeping the original forms of the both types of particles. A ratio of an average particle size, RB, of the coarse particles to an average particle size, RA, of the fine particles of 30:1 or above, and a content, WA, of the fine particles in the protective layer based on the total content, W, of the content, WA, of the fine particles and the content, WB, of the coarse particles on the weight basis is in the range of 15 to 80 %. A method for fabricating the detecting device having such a protective layer as set out above is also described.
摘要:
An improved structure of an oxygen sensing element installed in an oxygen sensor designed to measure an oxygen content in gases is provided. The structure includes a cup-shaped solid electrolyte body, an inner electrode, and an outer electrode. The solid electrolyte body has a portion exposed to the gases which has a given length. The inner electrode is formed on an inner wall of the solid electrolyte body and exposed to air. The outer electrode is formed on an outer wall of the solid electrolyte body and exposed to the gases through a protective layer. The oxygen content in the gases is measured based on output signals from the inner and outer electrodes. The outer electrode occupies an area on the outer wall of the solid electrolyte body within a range of 80% of the given length of the gas-exposed portion of the solid electrolyte body and has a thickness ranging from 1.2 to 3.0 &mgr;m. This allows the oxygen sensing element to determine the oxygen content in the gases precisely and to have an improved heat-resistance.
摘要:
A gas sensing element has a solid electrolytic body, a reference gas side electrode provided on a surface of the solid electrolytic body so as to be exposed to a reference gas, and a measured gas side electrode provided on another surface of the solid electrolytic body so as to be exposed to a measured gas. A crystal face strength ratio of the measured gas side electrode according to X-ray diffraction is 0.7≦{I(200)/I(111)} or 0.6≦{I(220)/I(111)}.
摘要:
A solid electrolytic body has an inside space serving as a reference gas chamber. A sensing electrode and a reference electrode are formed on the surface of the solid electrolytic body. A heater is disposed in the reference gas chamber. A contact portion comprises a region where the heater is brought into contact with the inner surface of the solid electrolytic body and an opposing region on the outer surface of the solid electrolytic body. The sensing electrode includes at least part of the contact portion. A gas receiving surface region, exposed to the measuring gas, extends from an element tip to a position spaced by a distance L away from the element tip. At least part of the contact portion is located in a region extending from the element tip to a position spaced by a distance 0.4L away from the element tip. The sensing electrode is entirely located in a region extending from the element tip to a position spaced by a distance 0.8L away from the element tip.
摘要:
A method for manufacturing an oxygen sensor unit of the type which includes at least a shaped body of a solid electrolyte, an inner electrode provided on an inside surface of the shaped body and exposed to a reference gas, an outer electrode provided on an outside surface of the shaped body and exposed to a gas to be measured, and a porous protective layer covering the outer electrode and a portion of the shaped body adjoining to said outer electrode wherein the solid electrolyte is made of a mixture of zirconia and a stabilizer therefor and is constituted of a sintered product of partially stabilized zirconia. The method is characterized in that the partially stabilized, sintered zirconia is obtained according to a high temperature sintering process which includes at least the step of sintering the mixture at a temperature of 1200° C. or over for a duration of 2 to 6 hours wherein a value obtained by integrating a variation in the sintering temperature with the duration in the sintering process is in the range of 300 to 1500° C.·hour.
摘要:
A gas sensing element has a solid electrolytic body, a reference gas side electrode provided on a surface of the solid electrolytic body so as to be exposed to a reference gas, and a measured gas side electrode provided on another surface of the solid electrolytic body so as to be exposed to a measured gas. A crystal face strength ratio of the measured gas side electrode according to X-ray diffraction is 0.7≦{I(200)/I(111)} or 0.6≦{I(220)/I(111)}.