Abstract:
In a multilayer ceramic electronic component, a size of a step portion on a first main surface and a size of a step portion on a second main surface are different from each other. A first outer electrode includes a plating film containing Cu. A length of a portion of the plating film containing Cu that is positioned on the first main surface in a length direction and a length of a portion of the plating film containing Cu that is positioned on the second main surface in the length direction are different from each other.
Abstract:
An electronic component manufacturing method includes inserting an electronic component base body, which has a substantially rectangular parallelepiped shape and paired opposing end surfaces, paired opposing lateral surfaces connecting the end surfaces, and paired opposing principal surfaces perpendicular to the end surfaces and the lateral surfaces and connecting the end surfaces, in a receiving portion of a component holder. The receiving portion defining an accommodation space that is capable of receiving the electronic component base body, forming an oleophobic film over the surfaces of the electronic component base body by exposing the surfaces of the electronic component base body inserted in the receiving portion to gas containing an oleophobic material, taking out the electronic component base body, which includes the oleophobic film formed thereon, from the receiving portion, and forming outer electrodes on the electronic component base body having been taken out.
Abstract:
A multilayer ceramic capacitor includes a ceramic body including a stack of dielectric layers and internal electrodes, and an external electrode electrically connected to each of the internal electrodes and provided at each of both end surfaces of the ceramic body. The external electrode includes a metal layer and a plating layer on the metal layer. In a cross section of the metal layer that is obtained by cutting the external electrode along a plane parallel to a side surface at a central position in a width direction, the metal layer includes a dielectric material at an area ratio of about 20% or more, and includes cavities at an area ratio of about 5% or more and about 20% or less, the cavities having an average diameter of about 0.5 μm or more and about 1.5 μm or less, and having a maximum diameter of about 5.0 μm or less.
Abstract:
In an aligning device, in plan view, a first recess of a first transfer jig allows an entire region of a second recess of the first transfer jig to be situated within the first recess of the first transfer jig by a predetermined interval. A first recess of a second transfer jig allows an entire region of a second recess of the second transfer jig to be situated within the first recess of the second transfer jig by a predetermined interval. When the first transfer jig and the second transfer jig overlap each other, the first recess of the second transfer jig allows the entire region of the second recess of the first transfer jig to be situated within the first recess of the second transfer jig by a predetermined interval. With the alignment object being transferred into a cavity of the first transfer jig, by causing the first transfer jig and the second transfer jig to overlap each other, the alignment object is transferred from the cavity of the first transfer jig to a cavity of the second transfer jig.
Abstract:
An electronic component has dimensions (length×width×thickness) of about 0.6 mm to about 1.0 mm×about 0.3 mm to about 0.5 mm×about 0.07 mm to about 0.15 mm. An area of a triangle defined by a first hypothetical straight line being in contact with the top of a portion of an outer electrode positioned on a first main surface at a center in the width direction and extending in the length direction, a second hypothetical straight line being in contact with the top of a portion of the outer electrode positioned on the first end surface at the center in the width direction and extending in the thickness direction, and a third hypothetical straight line being in contact with the outer electrode at the center in the width direction and being inclined at about 45° with respect to the first and second hypothetical straight lines is about 450 μm2 or larger.
Abstract:
A method of manufacturing a ceramic electronic component includes adding a modifier to a surface of chip containing ceramics and an organic material, applying a conductive paste on the surface of the chip to which the modifier has been added, and firing the chip along with the conductive paste applied on the chip.
Abstract:
In an aligning device, in plan view, a first recess of a first transfer jig allows an entire region of a second recess of the first transfer jig to be situated within the first recess of the first transfer jig by a predetermined interval. A first recess of a second transfer jig allows an entire region of a second recess of the second transfer jig to be situated within the first recess of the second transfer jig by a predetermined interval. When the first transfer jig and the second transfer jig overlap each other, the first recess of the second transfer jig allows the entire region of the second recess of the first transfer jig to be situated within the first recess of the second transfer jig by a predetermined interval. With the alignment object being transferred into a cavity of the first transfer jig, by causing the first transfer jig and the second transfer jig to overlap each other, the alignment object is transferred from the cavity of the first transfer jig to a cavity of the second transfer jig.