Abstract:
The conventional white-light interferometer, confocal microscope, and ellipsometer are integrated as one device set in a functional sense, and the geometrical parameters conventionally measured may be deduced on the integrated device. Thus, the advantages and efficacies of equipment cost saving, on-line measuring, rapid monitoring, reduced manufacturing time, and reduced possibility of object damage during the manufacturing process may be secured, compared with the prior art.
Abstract:
A virtual reality telescopic observation system of an intelligent electronic device. The virtual reality telescopic observation system includes an electronic device arranged for displaying a virtual image, an engagement slot arranged for movably embedding the electronic device therein and a virtual reality telescopic optical module, including at least one optical lens installed corresponding to the electronic device, arranged for projecting the virtual image displayed by the electronic device into the virtual reality telescopic optical module, such that a viewer views the virtual image displayed by the electronic device from the virtual reality telescopic optical module. Wherein, when the viewer performs a virtual reality telescopic observation, the angle, distance and position of the virtual image displayed by the electronic device are adjusted according to a changing of the field of view made by the viewer.
Abstract:
An apparatus is provided for detecting transmittance of a trench. The trench is located on an infrared-transmittable material, which can be a wafer. The wafer is obtained after a ditching process. An image of the wafer is fetched. The contrast of the image is greatly enhanced. The contrast-enhanced image is used for automated analysis of the transmittance of the trench. Accuracy of detecting the transmittance is improved. Hence, the present invention uses a simple structure to detect transmittance defects of the trench for ensuring goodness of the wafer.
Abstract:
A flexible optical measuring device comprises an optical distance measuring module, an optical fiber adapter and an optical coupling module. The optical distance measuring module comprises a light source, an optical receiver and a computing unit. The optical fiber adapter is disposed and connected between the optical distance measuring module and the optical coupling module. The optical coupling module comprises a first optical fiber, a two-in-one optical coupler, a detector and a second optical fiber. A measuring beam is emitted from the light source and reaches the detector. The measuring beam then passes through the detector to the object and forms a reflected beam which is reflected back to the detector, then enters the second optical fiber and passes through the optical receiver and the optical receiver outputs a measurement signal. The computing unit calculates the distance between the object and a terminal of the detector accordingly.
Abstract:
A method is provided to label invisible fluorescence by a visible light. A surgeon gets rid of screen for direct observation without repeated location confirmations between surgical site and onscreen mark. Fluid movement of a fluorescent dye can be observed in a real-time mode. Through projecting a visible-light spot at a fluorescent area at real time, the surgeon observes the fluorescent area the visible-light spot projecting to. Hence, the problem that fluorescence imaging technology must rely on screen to see the location of the fluorescent area is solved. When a patient moves or fluorescent areas changes, an image sensor automatically adjusts an area labeled by a visible-light spot through changing a photographing area with a focus automatically set. In addition, the method adjusts a projecting angle of the visible-light spot with an initial mirror and a final mirror only. Adjustment of lens group is not required the saving money.
Abstract:
An apparatus is provided for detecting transmittance of a trench. The trench is located on an infrared-transmittable material, which can be a wafer. The wafer is obtained after a ditching process. An image of the wafer is fetched. The contrast of the image is greatly enhanced. The contrast-enhanced image is used for automated analysis of the transmittance of the trench. Accuracy of detecting the transmittance is improved. Hence, the present invention uses a simple structure to detect transmittance defects of the trench for ensuring goodness of the wafer.