Abstract:
System and method for creating a program. A program may be compiled, including determining one or more value transfer operations in the program. Each value transfer operation may specify a value transfer between a respective one or more source variables and a destination variable. For each of the one or more value transfer operations, the value transfer operation may be implemented, where the implementation of the value transfer operation may be executable to assign each variable of the value transfer operation to a respective memory resource, thereby mapping the variables to the memory resources, and dynamically change the mapping, including assigning the destination variable to the memory resource of a first source variable of the one or more source variables, thereby transferring the value from the first source variable to the destination variable without copying the value between the memory resources.
Abstract:
Techniques are disclosed relating to encoding communications. In some embodiments, for different rows of an encoding matrix, the following operations are performed: generate a set of operations for entries in the row, where the set of operations includes respective operations to be performed on the entries for multiplication of the matrix by a vector, propagate values of entries in the encoding matrix into the set of operations, and simplify ones of the set of operations based on the propagated values to generate an output set of operations. In some embodiments, the output sets of operations are usable to encode input data for communication over a medium. In some embodiments, the disclosed techniques facilitate loop unrolling within compiler memory constraints. In some embodiments, an apparatus (e.g., a mobile device) is configured with the output sets of operations.
Abstract:
System and method for creating a program. A program may be compiled, including determining one or more value transfer operations in the program. Each value transfer operation may specify a value transfer between a respective one or more source variables and a destination variable. For each of the one or more value transfer operations, the value transfer operation may be implemented, where the implementation of the value transfer operation may be executable to assign each variable of the value transfer operation to a respective memory resource, thereby mapping the variables to the memory resources, and dynamically change the mapping, including assigning the destination variable to the memory resource of a first source variable of the one or more source variables, thereby transferring the value from the first source variable to the destination variable without copying the value between the memory resources.
Abstract:
Techniques are disclosed relating to configuring an interlock memory system. In one embodiment, a method includes determining a sequence of memory access requests for a program and generating information specifying memory access constraints based on the sequence of memory accesses, where the information is usable to avoid memory access hazards for the sequence of memory accesses. In this embodiment, the method further includes configuring first circuitry using the information, where the first circuitry is included in or coupled to a memory. In this embodiment, after the configuring, the first circuitry is operable to perform memory access requests to the memory corresponding to the sequence of memory accesses while avoiding the memory access hazards, without receiving other information indicating the memory access hazards.
Abstract:
Techniques are disclosed relating to self-addressing memory. In one embodiment, an apparatus includes a memory and addressing circuitry coupled to or comprised in the memory. In this embodiment, the addressing circuitry is configured to receive memory access requests corresponding to a specified sequence of memory accesses. In this embodiment, the memory access requests do not include address information. In this embodiment, the addressing circuitry is further configured to assign addresses to the memory access requests for the specified sequence of memory accesses. In some embodiments, the apparatus is configured to perform the memory access requests using the assigned addresses.
Abstract:
Techniques are disclosed relating to resolving memory access hazards. In one embodiment, an apparatus includes a memory and circuitry coupled to or comprised in the memory. In this embodiment, the circuitry is configured to receive a sequence of memory access requests for the memory, where the sequence of memory access requests is configured to access locations associated with entries in a matrix. In this embodiment, the circuitry is configured with memory access constraints for the sequence of memory access requests. In this embodiment, the circuitry is configured to grant the sequence of memory access requests subject to the memory access constraints, thereby avoiding memory access hazards for a sequence of memory accesses corresponding to the sequence of memory access requests.
Abstract:
Techniques relating to LDPC encoding. A set of operations is produced that is usable to generate an encoded message based on an input message. The set of operations corresponds to operations for entries in a smaller matrix representation that specifies locations of non-zero entries in an LDPC encoding matrix. A mobile device is configured with the set of operations to perform LDPC encoding. Circuitry configured with the set of operations performs LDPC encoding with high performance, relatively small area and/or low power consumption.
Abstract:
Techniques are disclosed relating to implementation of LDPC encoding circuitry on a single integrated circuit (IC). In some embodiments, circuitry on a single IC includes message circuitry configured to receive or generate a message to be encoded, encode circuitry configured to perform low density parity check (LDPC) encoding on the message, noise circuitry configured to apply noise to the encoded message, and decode circuitry configured to perform LDPC decoding of the message. In some embodiments, the disclosed techniques may reduce production costs (e.g., by reducing overall chip area), facilitate LDPC testing, and/or provide multiple different functions relating to message transmission on a single chip.
Abstract:
Techniques are disclosed relating to reordering sequences of memory accesses. In one embodiment, a method includes storing a specified sequence of memory accesses that corresponds to a function to be performed. In this embodiment, the specified sequence of memory accesses has first memory access constraints. In this embodiment, the method further includes reordering the specified sequence of memory accesses to create a reordered sequence of memory accesses that has second, different memory access constraints. In this embodiment, the reordered sequence of memory accesses is usable to access a memory to perform the function. In some embodiments, performance estimates are determined for a plurality of reordered sequences of memory accesses, and one of the reordered sequences is selected based on the performance estimates. In some embodiments, the reordered sequence is used to compile a program usable to perform the function.
Abstract:
Techniques are disclosed relating to self-addressing memory. In one embodiment, an apparatus includes a memory and addressing circuitry coupled to or comprised in the memory. In this embodiment, the addressing circuitry is configured to receive memory access requests corresponding to a specified sequence of memory accesses. In this embodiment, the memory access requests do not include address information. In this embodiment, the addressing circuitry is further configured to assign addresses to the memory access requests for the specified sequence of memory accesses. In some embodiments, the apparatus is configured to perform the memory access requests using the assigned addresses.