Abstract:
A communications method implemented in a transmission point (TP) used in a coordinated multipoint transmission and reception (CoMP) system is disclosed. The communications method comprises transmitting, to a user equipment (UE), attributers for up to four indicators indicating at least physical downlink shared channel (PDSCH) resource element (RE) mapping, and transmitting, to the UE, one of the four indicators, each of which is conveyed in 2 bits, wherein the four indicators comprises ‘00’, ‘01’, ‘10’, and ‘11’ corresponding to a first set, a second set, a third set, and a fourth set of parameters, respectively. Other methods, apparatuses, and systems are also disclosed.
Abstract:
A method implemented in a user equipment (UE) used in an orthogonal frequency division multiple access (OFDMA) wireless communications system supporting coordinated multi-point (CoMP) joint transmission (JT) is disclosed. The method includes measuring reference signal received power (RSRP), transmitting, to a network, first feedback on the RSRP, receiving, from the network, a CoMP measurement set, conducting pre-scheduling CoMP UE fallback according to the CoMP measurement set, computing channel quality and direction information according to a UE category, and transmitting, to the network, second feedback on the channel quality and direction information. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a user equipment used in a wireless communications system is disclosed. The method comprises receiving from a base station an indication of a first modulation type for the user equipment, receiving from the base station a first data signal for the user equipment, receiving from the base station an indication of a minimum time-frequency unit that is assigned to another user equipment, receiving a second data signal for said another user equipment, where a second modulation type for said another user equipment is unknown to the user equipment, and cancelling and suppressing interference by using the minimum time-frequency unit. Other methods, systems, and apparatuses also are disclosed.
Abstract:
A wireless communications system is disclosed. The system comprises a baseband processing unit (BBU) pool including one or more baseband processing units (BBUs), and a plurality of remote radio heads (RRHs) connected to the BBU pool through a front-haul network, wherein the wireless communications system has a plurality of sectors, each of which includes one or more small cells, each of which is deployed by one of the plurality of RRHs, wherein a BBUs is mapped to two or more RRHs in a sector in a one-to-many configuration, and a BBU is mapped to a single RRH in a sector in a one-to-one configuration, and wherein a combination of the one-to-one configuration and the one-to-many configuration is applied to each sector. Other systems, apparatuses, and methods also are disclosed.
Abstract:
A method implemented in a user terminal is disclosed. The method comprises obtaining known precoding matrix P of rank r and modulation and coding scheme assignments used in an original transmission, and a desired retransmission rank r′, forming an approximate channel covariance matrix, estimating a minimum mean square error receiver SINR for each layer to be retransmitted responsive to said forming, and finding a retransmission precoding matrix from a preceding codebook that maximizes a sum-rate for enabling precoding selections for retransmissions in uplink multiple-input multiple-output MIMO hybrid automatic repeat request HARQ. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a user terminal is disclosed. The method comprises obtaining known precoding matrix P of rank r and modulation and coding scheme assignments used in an original transmission, and a desired retransmission rank r′, forming an approximate channel covariance matrix, estimating a minimum mean square error receiver SINR for each layer to be retransmitted responsive to said forming, and finding a retransmission precoding matrix from a preceding codebook that maximizes a sum-rate for enabling precoding selections for retransmissions in uplink multiple-input multiple-output MIMO hybrid automatic repeat request HARQ. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a user equipment configured to be used in a multi-user (MU) multiple-input multiple-output (MIMO) wireless communications system is disclosed. The method includes transmitting to a base station a first channel state information (CSI) report determined according to a single-user (SU) MIMO rule, and transmitting to the base station a second CSI report determined according to an MU-MIMO rule. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method for determining attributes of communication channels of multi-user (MU)-multiple input multiple output (MIMO) users in an orthogonal frequency division multiplexing based multiple access (OFDMA) system is disclosed. The method comprises receiving from a base station, for at least one sub-band of contiguous sub-carriers, an indication of an estimate of or an upper-bound on a total number of streams that are co-scheduled by the base station on the at least one sub-band or an indication of a fraction of a transmit power at the base station that is applied to streams that are scheduled for transmission to a particular user, determining one or more signal quality measures for the at least one sub-band based on at least one of the fraction or the estimate of or the upper-bound on the total number of streams that are scheduled by the base station on the at least one sub-band, and transmitting to the base station an indication of the one or more signal quality measures. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a user equipment used in a multi-user multiple input multiple output (MU-MIMO) wireless communications system is disclosed. The method includes receiving from a base station an indication of a first modulation type for the user equipment, receiving a first data signal for the user equipment, receiving a second data signal for a co-scheduled user equipment, where a second modulation type for the co-scheduled user equipment is unknown to the user equipment, and deciding the second modulation type. Other methods, systems, and apparatuses also are disclosed.
Abstract:
A method implemented in a mobile communications network supporting coordinated multiple point transmission and reception (CoMP) is disclosed. The method includes transmitting, to a user equipment (UE), data in a physical downlink shared channel (PDSCH), and transmitting a reference signal to the UE, wherein a union of resource elements (REs) allocated for reference signals transmitted from a subset of a plurality of transmission points (TPs) in a CoMP set are excluded from resource mapping for transmitting the data to the UE. Other methods, systems, and apparatuses also are disclosed.