Abstract:
A gas separation method includes supplying a mixed gas to a zeolite membrane complex and permeating a high permeability gas through the zeolite membrane complex to separate the high permeability gas from other gases. The mixed gas includes a high permeability gas and a trace gas that is lower in concentration than the high permeability gas. The molar concentration of a first gas included in the trace gas in the mixed gas is higher than the molar concentration of a second gas included in the trace gas in the mixed gas. The adsorption equilibrium constant of the first gas on the zeolite membrane is less than 60 times that of the high permeability gas. The adsorption equilibrium constant of the second gas on the zeolite membrane is 400 times or more that of the high permeability gas.
Abstract:
A monolithic separation membrane structure comprises a porous monolithic substrate and a separation membrane. The monolithic substrate includes a first end surface, a second end surface and a plurality of through-holes respectively passing from the first end surface to the second end surface. The separation membrane is formed on an inner surface of the respective plurality of through-holes. The surface roughness Ra of the separation membrane is no more than 1 micrometer and the thickness of the separation membrane is no more than 5 micrometers.
Abstract:
An object of the present invention is to provide a honeycomb shaped porous ceramic body in which a strength deteriorates less than before after a separation layer is formed, a manufacturing method for the porous ceramic body, and a honeycomb shaped ceramic separation membrane structure. A honeycomb shaped porous ceramic body 9 includes a honeycomb shaped substrate 30 and an intermediate layer. At least a part of the intermediate layer of the honeycomb shaped porous ceramic body 9 has a structure in which aggregate particles are bonded to one another by a component of an inorganic bonding material. The inorganic bonding material is titania.
Abstract:
There is provided a honeycomb-shaped ceramic separation-membrane structure having higher pressure resistance than conventional ones and being capable of reducing production costs. The honeycomb-shaped ceramic separation-membrane structure (1) is provided with a honeycomb-shaped base material (30), an intermediate layer, and a separation layer. At least part of a ceramic porous body (9) has a structure where aggregate particles are bonded to one another by an inorganic bonding material component. In the ceramic separation-membrane structure (1), an internal pressure fracture strength capable of fracturing the structure by application of water pressure inside the cells (4) is 7 MPa or more.
Abstract:
The present invention aims to provide a honeycomb-shaped ceramic porous body where the strength reduction upon forming a separation layer is less than conventional porous bodies. The ceramic porous body (9) is provided with a honeycomb-shaped base material (30) and an intermediate layer. At least a part of the ceramic porous body (9) has a structure where aggregate particles are bonded to one another by an inorganic bonding material component. In the ceramic porous body (9), the intermediate layer thickness, which is the thickness of the intermediate layer, is 100 μm or more and 500 μm or less, the base material thickness at the shortest portion between the cells, but excluding the intermediate layer and the separation layer is 0.51 mm or more and 1.55 mm or less, and the ratio of the base material thickness to the intermediate layer thickness is 2.5 or more.
Abstract:
A separation membrane module includes a separation membrane complex having a support and a separation membrane provided on the support, a housing container for housing the separation membrane complex, and a sealing member existing between a supporting surface provided inside the housing container and a supported surface of the separation membrane complex, being in close contact with the supporting surface and the supported surface. A first static friction coefficient between the sealing member and the supported surface and/or a second static friction coefficient between the sealing member and the supporting surface are/is not higher than 0.5. A value obtained by multiplying the first static friction coefficient and/or the second static friction coefficient by a compressive force [N] of the sealing member and dividing the product by a mass [kg] of the separation membrane complex is larger than 0.7.
Abstract:
A separation membrane structure includes a porous support, a first separation membrane and a second separation membrane. The first separation membrane is formed on the porous support and contains high silica zeolite having Si/Al atomic ratio of greater than or equal to 200. The second separation membrane is formed on the first separation membrane and contains cation.
Abstract:
An aluminophosphate-metal oxide bonded body including a metal oxide having a bonding surface on a part of the surface thereof, and aluminophosphate that is disposed on the bonding surface of the metal oxide, wherein an alkali metal, an alkaline earth metal or both of these is/are disposed on the bonding surface of the metal oxide, and the content rate of the alkali metal, alkaline earth metal or both is from 0.3 to 30.0% by mass with respect to all of the substances that are disposed on the bonding surface of the metal oxide. An aluminophosphate-metal oxide bonded body that provides a favorable bonded state even for complicated shapes is provided.
Abstract:
Provided are a ceramic separation membrane structure improved in separation performance with no reduction in permeability, and a method for producing the structure. The ceramic separation membrane structure includes a ceramic porous body 9, a zeolite separation membrane 33 disposed on the ceramic porous body 9, and a repair portion 34 made of a repairing material of organic-inorganic hybrid silica. The organic-inorganic hybrid silica is a combination of an organic component and a silicon-containing inorganic component.
Abstract:
Provided is a simple method for regenerating a zeolite membrane which has been exposed to water. The method for regenerating a zeolite membrane is a method for regenerating a zeolite membrane which is formed on a ceramic porous body and subjected to removal treatment of structure directing agent. Heating is performed at a regeneration temperature at which the difference in ratio of thermal expansion amount between the ceramic porous body and the zeolite membrane is 0.3% or less when 40° C. is set as datum. The regeneration temperature is preferably a temperature not exceeding the oxidative pyrolysis temperature of the structure directing agent used in the formation of the zeolite membrane.