Abstract:
A flexure includes a metal base, a base insulation layer formed on the metal base, a terminal formed on the base insulation layer, a conductor portion electrically conductive to the terminal and an detouring extending portion formed on the conductor portion. The conductor portion includes a conductor and a cover layer covering the conductor. A conductive adhesive is supplied to the terminal. The detouring extending portion is formed in a longitudinal middle of the conductor portion and extends from the side surface of the conductor portion in a direction intersecting the length direction of the conductor portion along the base insulation layer.
Abstract:
The flexure tail includes a tail body, a first bent portion extending in a width direction of the tail body, a second bent portion extending in a length direction of a flexure, a tail pad portion, a conductor bent portion where a direction of a conductor changes, an extension portion, and a test conducting portion. The test conducting portion includes a conductor connecting portion conductive to a conductor, a jumper conductor, and a test pad arranged in the extension portion. The jumper conductor has a first end portion connected to the conductor connecting portion, and a second end portion connected to the test pad.
Abstract:
A circuit member includes a metal base, an insulating layer, a conductor, and a cover layer. A terminal portion includes a thick portion formed on a side part of the insulating layer, and an extension portion, which is a part of the conductor, overlapping the thick portion. The extension portion includes a side pad portion along a side surface of the thick portion. A side surface of the side pad portion constitutes a side pad extending in a thickness direction of the conductor. A length of the side pad in a thickness direction is greater than a thickness of the conductor. A side pad insulating portion, which is formed of a part of the thick portion, is formed between a distal end of the metal base and the side pad portion.
Abstract:
A flexure of a disk drive suspension includes a metal base, and a wiring portion provided along the metal base. The wiring portion includes a base insulating layer, a conductor layer overlapping with the base insulating layer, and a cover insulating layer overlapping with the conductor layer, and the metal base includes a pair of first portions having side surfaces opposed to each other and a second portion overlapping with the conductor layer and connected to the pair of first portions. At least one of the base insulating layer and the cover insulating layer is in contact with the side surfaces between the pair of first portions, and a thickness of the second portion is smaller than a thickness of the first portions.
Abstract:
A flexure has a metal support layer, an electric insulating layer laid on a surface of the metal support layer, a wiring layer having a general part laid on a surface of the electric insulating layer and a terminal to provide a conductive connection to an external slider, and a raising structure in a thickness direction of the wiring layer provided to the terminal independently of the metal support layer so that the terminal protrudes from a surface of the general part or has a surface being flush with the surface of the general part.
Abstract:
A terminal pad of a flexure for a head suspension connected to a functional part through a bonding material includes a terminal body, a base plating formed on a surface of the terminal body and having an uniform thickness, a padding plating made of a same material as the base plating and integrated with the base plating so that the padding plating swells with respect to the base plating, and a surface plating formed on a surface of the padding plating.
Abstract:
A flexure of a suspension for a disk drive includes a metal base and a wiring portion provided along the metal base and including a base insulation layer, a conductor layer overlaid on the base insulation layer, and a cover insulation layer overlaid on the conductor layer. The flexure includes a first area on which an electronic component is mounted and a second area aligned alongside the first area, and the first area includes a thin-walled portion which overlaps the electronic component and having a thickness less than a thickness of the second area.
Abstract:
A thin circuit board such as a flexure has a metal support layer forming a substrate, a base insulating layer provided on the metal support layer, a wiring layer being wiring traces provided on the base insulating layer, a cover insulating layer covering the wiring layer, internal terminals provided to the respective wiring traces and sequentially arranged side by side, each one internal terminal of said internal terminals used to be solder-bonded to a corresponding external terminal through solder material, and a wall provided for the solder material on at least any one of adjacent internal terminals of said internal terminals.
Abstract:
Provided is a wiring thin plate capable of suppressing deterioration of an electric characteristic and variation in thickness of an aerial wiring portion while advancing reduction of rigidity of the aerial wiring portion. The wiring thin plate includes an aerial wiring portion including wiring traces and passing over an airspace, aerial base layers provided at the respective wiring traces in the aerial wiring portion and being apart from each other, and an aerial cover layer provided in the aerial wiring portion and spanning from the wiring traces of the aerial wiring portion through the aerial base layers to interspaces between adjacent aerial base layers of said aerial base layers.
Abstract:
A flexure chain blank sheet includes frame units. Each frame unit includes a frame portion, and flexure elements. The flexure element includes a distal end portion, and an extending portion. The frame portion includes a pair of lengthwise frames and a pair of lateral frames. The first lateral frame connects between tail portions of the flexure elements. The second lateral frame is formed of a distal end linking portion which is constituted by connecting between respective adjacent extending portions. The distal end linking portion includes first cut-off portions to be cut along a longitudinal direction between the adjacent extending portions, and second cut-off portions to be cut along a width direction between the distal end portion and the extending portion.