Abstract:
The coil spring according to the present invention is a coil spring that is formed by spirally winding a wire rod and that includes a core that is elastically deformable and a reinforced fiber layer including reinforcing fibers wound around an outer circumference of the core and a thermoset resin that firmly adheres the reinforcing fibers to one another, wherein, in at least a part of a surface layer of the reinforced fiber layer, a content percentage of the reinforcing fibers on an inner circumferential side of the coil spring is larger than a content percentage of the reinforcing fibers on an outer circumferential side of the coil spring.
Abstract:
The present invention provides an α+β type titanium alloy and a production method therefor, which has an ultrafine structure causing superplasticity under low temperatures and has a high deformation ratio compared to conventional α+β type Ti alloys. The alloy has an ultrafine structure made of equiaxial crystals in which an area ratio of crystals having a grain diameter of 1 μm or less is 60% or more, and maximum frequency grain diameter is 0.5 μm or less, wherein a portion in which the integration degree of plane orientation of the hexagonal close-packed crystal is 1.00 or more exists within a range of 0 to 60 degrees with respect to a normal line of a processed surface of the alloy.
Abstract:
A spring consists of, by mass %, 0.5 to 0.7% of C, 1.0 to 2.0% of Si, 0.1 to 1.0% of Mn, 0.1 to 1.0% of Cr, not more than 0.035% of P, not more than 0.035% of S, and the balance of Fe and inevitable impurities. The spring has a structure including not less than 65% of bainite and 4 to 13% of residual austenite by area ratio in a cross section. The spring has a compressive residual stress layer in a cross section from a surface to a depth of 0.35 mm to D/4, in which D (mm) is a circle-equivalent diameter of the cross section. The spring has a high hardness layer with greater hardness than a center portion by 50 to 500 HV from a surface to a depth of 0.05 to 0.3 mm.
Abstract:
A coil spring includes: a core that is elastically deformable; and a reinforced fiber layer including reinforced fibers wound around an outer circumference of the core, and a thermoset resin that firmly adheres the reinforced fibers to one another. In at least a part of a surface layer of the reinforced fiber layer, a content percentage of the reinforced fibers on an inner circumferential side of the coil spring is larger than a content percentage of the reinforced fibers on an outer circumferential side of the coil spring.
Abstract:
A high-strength magnesium alloy member is suitable for products in which at least one of bending stress and twisting stress primarily acts. The member has required elongation and 0.2% proof stress, whereby strength and formability are superior, and has higher strength and large compressive residual stress in the vicinity of the surface of a wire rod. In the magnesium alloy member formed as a wire rod in which at least one of bending stress and twisting stress primarily acts, the wire rod includes a surface portion having the highest hardness of 170 HV or more in the vicinity of the surface and an inner portion having a 0.2% proof stress of 550 MPa or more and an elongation of 5% or more, and the wire rod has the highest compressive residue stress in the vicinity of the surface of 50 MPa or more.
Abstract:
A high-strength magnesium alloy member is suitable for products in which at least one of bending stress and twisting stress primarily acts. The member has required elongation and 0.2% proof stress, whereby strength and formability are superior, and has higher strength and large compressive residual stress in the vicinity of the surface of a wire rod. In the magnesium alloy member formed as a wire rod in which at least one of bending stress and twisting stress primarily acts, the wire rod includes a surface portion having the highest hardness of 170 HV or more in the vicinity of the surface and an inner portion having a 0.2% proof stress of 550 MPa or more and an elongation of 5% or more, and the wire rod has the highest compressive residue stress in the vicinity of the surface of 50 MPa or more.
Abstract:
A magnet plate used for a rotor core of a motor, includes a magnetic pole portion being set between an outer peripheral edge of a body portion and a magnet slot and having a radial width being smaller than a radial sectional width of the permanent magnet, and a higher hardness portion being formed into a hook shape along an end corner of the magnet slot and have a smaller width than the radial sectional width of the permanent magnet.
Abstract:
The coil spring includes steel wire material containing 0.45 to 0.80 weight % of C, 0.15 to 2.50 weight % of Si, 0.3 to 1.0 weight % of Mn and iron and inevitable impurities as the remainder, and having a circle equivalent diameter of 2.5 mm to 10 mm, in which internal hardness at a freely selected cross section of the wire material is in a range of 570 to 700 Hv, C-condensed layer which exceeds average concentration of C contained in the steel wire material exists at surface layer part, and in an approximate maximum principal stress direction generated when a compressive load is loaded on spring of inner diameter side of the coil spring of the wire material, unloaded compressive residual stress at a depth of 0.2 mm and 0.4 min from surface of the wire material is not less than 200 MPa and not less than 60 MPa, respectively.