摘要:
Disclosed is a copper-infiltrated valve seat insert of an iron-base sintered alloy having a two-layer structure formed by integrating a functional member side layer and a supporting member side layer across a boundary, and the thermal conductivity rate at 300° C. is 25 W/m·K or more in the functional member side layer and 60 W/m·K or more in the supporting member side layer.
摘要:
A valve seat insert made of an iron-base sintered alloy is configured to have a structure in which the base matrix phase is a fine carbide precipitation phase in which a fine carbide being 10 μm or less in size is precipitated and which has a hardness of 550 HV or more in Vickers hardness; and in the base matrix phase, hard-particles having a hardness of 650-1200 HV in Vickers hardness are dispersed in an area percentage of 20-40%, a diffusional phase is formed in an area percentage of more than 0% and not more than 5%, and solid-lubricant particles are dispersed in an area percentage of 0-5%. Even if a valve having a high face hardness of 400 HV or more, or 600 HV or more is used, a facing valve seat insert wears only slightly, improving valve train durability.
摘要:
Provided is a valve seat insert for an internal combustion engine, which has both an excellent heat dissipation property and excellent wear resistance. The valve seat insert for an internal combustion engine is used while being press-fitted into an aluminum alloy cylinder head, is made of an iron-based sintered alloy, is formed by integrating two layers of a functional member side layer and a supporting member side layer, and has a plating film on at least an outer peripheral side. The plating film is preferably a copper plating film. The plating film is a plating film having a thickness of 1 to 100 μm and a hardness of 50 to 300 HV, and the hardness of the plating film is adjusted so as to satisfy a range of 1.05 to 4.5 times hardness of the cylinder head in Vickers hardness HV. Pores contained in the valve seat insert are preferably sealed with a curable resin before plating treatment. Consequently, a valve seat insert for an internal combustion engine which does not go through complicated processes, is not accompanied by a significant decrease in wear resistance compared with the prior art, and has an excellent heat dissipation property is provided. If a roughened surface region is further formed at at least one portion on the outer peripheral surface of the valve seat insert in addition to the plating film, a falling out resistance property is improved. The same effect can be obtained even if the valve seat insert is a single layer of only the functional member side layer.
摘要:
In an assembly of a hollow poppet valve and a valve seat insert, the hollow poppet valve's head is integrally formed with a stem end, a hollow part is formed from the head to a stem, and coolant is filled into the hollow part along with an inert gas. The valve seat insert is formed of iron base sintered alloy and obtained by integrating two layers of a supporting material side layer and a valve contact face side layer. The hollow poppet valve is formed of a material having thermal conductivity of 5-45 (W/m·K) at 20-1000° C. The valve seat insert includes the supporting material side layer having thermal conductivity of 23-50 (W/m·K) at 20-300° C. and a valve contact face side layer having thermal conductivity of 10-22 (W/m·K) at 20-300° C. This enables a valve temperature decrease throughout an engine's entire RPM range compared with the prior art.
摘要:
An iron-base sintered alloy material includes a matrix phase, Co base inter-metallic compound particles having hardness of 600 to 1200 HV, carbide-type particles having hardness of 400 to 700 HV, and optionally solid-lubricant particles, the particles being dispersed in the matrix phase. A matrix part including the matrix phase and the two kinds of hard-particles contains 0.3 to 1.5% by mass of C, and 10 to 50% by mass of one or more kinds selected from Si, Mo, Cr, Ni, Co, Mn, S, N, V, Ca, F, Mg, and O, the balance being Fe and unavoidable impurities. By dispersing, in the matrix phase, the Co base inter-metallic compound particles having high hardness, and the carbide-type particles having low hardness and low aggressiveness to mated material and increasing mechanical strength, wear-resistance can be improved with low aggressiveness to mated material and high radial crushing strength (350 MPa or more).
摘要:
Provided is a valve seat insert made of an iron-base sintered alloy, in which a base matrix part that includes a base matrix phase and hard particles, has a base matrix part composition containing, in % by mass, 0.5%-2.0% of carbon and 10%-70% in total of one kind or two or more kinds selected from nickel, cobalt, chromium, molybdenum, vanadium, tungsten, manganese, silicon and sulfur, with the balance being iron and unavoidable impurities, and Co-base hard particles having a composition containing, 1.0% or less of C, 25%-50% of Mo, 5%-15% of Cr, Si as an impurity in a content adjusted to be 0.3% or less, with the balance being Co, and having a Vickers hardness of 500 to 1,500 HV, are dispersed as hard particles in the base matrix phase in an amount of 10%-60% by mass with respect to the total amount of the valve seat insert.
摘要:
A highly wear-resistant valve seat insert is provided. When an iron-based powder, a hard-particle powder, and a graphite powder are mixed to obtain a mixed powder, for formation of a layer on a valve-contacting face side, the hard-particle powder having an average particle size 15-50 μm, and the iron-based powder having an average particle size 15-50 μm are blended so a matrix part composition after sintering is a composition containing C: 0.3 to 2.0% by mass, one or more kinds selected from Co, Si, Ni, Mo, Cr, Mn, S, W, and V at 70% by mass or less in total, the balance being Fe and unavoidable impurities and a matrix part structure after sintering is a structure which contains hard-particles at from 10 to 65% by mass with respect to a total amount of a layer on a valve-contacting face side and disperses the hard-particles at 1000 particles/mm2 or more.
摘要翻译:提供高度耐磨的阀座插件。 当将铁基粉末,硬质颗粒粉末和石墨粉末混合以获得混合粉末时,为了在阀接触面侧形成层,将平均粒径为15μm的硬质颗粒粉末, 将平均粒径为15〜50μm的铁基粉末混合,烧结后的基体成分组成为含有C:0.3〜2.0质量%的组成,选自Co,Si, Ni,Mo,Cr,Mn,S,W和V总计为70质量%以下,余量为Fe和不可避免的杂质,烧结后的基体部分结构为含有10〜 相对于阀接触面侧的层的总量为65质量%,将硬粒分散在1000个/ mm 2以上。