Abstract:
Automatically identifying associations between vehicle operating data and non-vehicle operating data may include identifying vehicle transportation network data representing a vehicle transportation network, identifying vehicle operating data reported for a plurality of vehicles, wherein the vehicle operating data includes vehicle operation records, identifying non-vehicle operating data reported for a plurality of users, wherein the non-vehicle operating data includes non-vehicle operation records, automatically identifying an association between the vehicle operating data and the non-vehicle operating data, and generating updated vehicle transportation network data based on the vehicle transportation network data.
Abstract:
A parking lot mapping system includes a receiver, a storage device and a controller. The receiver is configured to receive data transmitted from a plurality of vehicles, the data including a parking event and a position of each vehicle of the plurality of vehicles. The storage device is configured to store the data received by the receiver. The controller is programmed to determine that each vehicle of the plurality of vehicles is in a parking lot based on the parking event and to calculate a parking lot route based on accumulation of the data including the position of each vehicle of the plurality of vehicles.
Abstract:
In a method for identifying the parking status of a vehicle, navigation data for a vehicle is recorded that includes at least some GPS navigation data originating from communication with GPS satellites. The vehicle is identified as being parked in an enclosed structure for a parking event if the navigation data does not include GPS navigation data associated with the parking event.
Abstract:
A method and apparatus for associating passenger docking locations with destinations using vehicle transportation network partitioning are disclosed. Associating passenger docking locations with destinations using vehicle transportation network partitioning may include an autonomous vehicle identifying transportation network information representing a vehicle transportation network, the vehicle transportation network including a primary destination, wherein identifying the transportation network information includes identifying the transportation network information such that it includes docking location information representing a plurality of docking locations, wherein each docking location corresponds with a respective location in the vehicle transportation network, such that at least one docking location is associated with the primary destination based on pedestrian travel time, determining a target docking location, identifying a route from an origin to the target docking location in the vehicle transportation network using the transportation network information, and traveling from the origin to the target docking location using the route.
Abstract:
Methods and apparatus are provided for monitoring a vehicle, and in particular, for monitoring a vehicle to determine a vehicle condition based on non-operational factors to incentivize or penalize a driver. One method of monitoring a vehicle comprises providing the vehicle to a driver for a term, the vehicle associated with a base vehicle condition, collecting non-operational data of the vehicle during the term, manipulating the non-operational data of the vehicle periodically throughout the term to arrive at an updated vehicle condition and providing an incentive or a penalty to the driver based on the updated vehicle condition.
Abstract:
A method and apparatus for identifying parking areas may include identifying a plurality of coordinates representing vehicle spatial data, partitioning the plurality of coordinates into at least two groups of vehicle locations based on at least one condition existing when the plurality of coordinates was identified, clustering the vehicle spatial data for a first group of the at least two groups of vehicle locations based on proximity, comparing dimensions of the clustered vehicle spatial data for the first group with other location data within the vehicle transportation network information, and defining a respective location of the clustered vehicle spatial data as a parking area of a plurality of parking areas. Each parking area is associated with a respective location in a vehicle transportation network. The parking area information may be used in the identification of a route from an origin to a primary destination.
Abstract:
A system and method of predicting future demand of a charging station include collecting probe data from a plurality of electric vehicles. The probe data includes charging activity history of the plurality of electric vehicles. A usage pattern of a charging station is determined based on the probe data for the charging station. A future demand for the charging station is predicted by applying the usage pattern to a factor associated with a requesting electric vehicle. The predicted future demand for the charging station is provided to the requesting electric vehicle.
Abstract:
A method and apparatus for autonomous vehicle routing and navigation using passenger docking locations are disclosed. Autonomous vehicle routing and navigation using passenger docking locations may include an autonomous vehicle identifying vehicle transportation network information representing a vehicle transportation network, the vehicle transportation network including a primary destination, wherein identifying the vehicle transportation network information includes identifying the vehicle transportation network information such that it includes docking location information representing a plurality of docking locations, wherein each docking location corresponds with a respective location in the vehicle transportation network. The autonomous vehicle may determine a target docking location for the primary destination based on the vehicle transportation network information, identify a route from an origin to the target docking location in the vehicle transportation network using the vehicle transportation network information, and travel from the origin to the target docking location using the route.
Abstract:
A method and apparatus for associating parking areas with destinations may include a vehicle identifying transportation network information including a primary destination and parking area information representing a plurality of parking areas, such that the parking area information includes automatically generated parking area association information describing an association between at least one parking area and the primary destination. The vehicle may determine a target parking area from the plurality of parking areas for the primary destination based on the transportation network information, and identify a route from an origin to the target parking area in the vehicle transportation network using the transportation network information. The vehicle may include a trajectory controller configured to operate the vehicle to travel from the origin to the target parking area using the route.
Abstract:
In a method for identifying the parking status of a vehicle, navigation data for a vehicle is recorded that includes at least some GPS navigation data originating from communication with GPS satellites. The vehicle is identified as being parked in an enclosed structure for a parking event if the navigation data does not include GPS navigation data associated with the parking event.