Abstract:
One embodiment of the present invention sets forth a technique for performing nested kernel execution within a parallel processing subsystem. The technique involves enabling a parent thread to launch a nested child grid on the parallel processing subsystem, and enabling the parent thread to perform a thread synchronization barrier on the child grid for proper execution semantics between the parent thread and the child grid. This technique advantageously enables the parallel processing subsystem to perform a richer set of programming constructs, such as conditionally executed and nested operations and externally defined library functions without the additional complexity of CPU involvement.
Abstract:
Techniques are disclosed for sharing of data exchange among kernels (each a set of instructions) executing on a system having multiple processing units. In an embodiment, each processing unit includes an on-chip scratchpad memory that can be accessed by the kernels executing on the processing unit. All or a portion of the scratchpad memory can be allocated and configured, for example, such that the scratchpad is accessible to multiple kernels in parallel, to one or more kernels in serial, or a combination of both.
Abstract:
One embodiment of the present invention sets forth a technique for performing nested kernel execution within a parallel processing subsystem. The technique involves enabling a parent thread to launch a nested child grid on the parallel processing subsystem, and enabling the parent thread to perform a thread synchronization barrier on the child grid for proper execution semantics between the parent thread and the child grid. This technique advantageously enables the parallel processing subsystem to perform a richer set of programming constructs, such as conditionally executed and nested operations and externally defined library functions without the additional complexity of CPU involvement.
Abstract:
A software development environment (SDE) and a method of compiling integrated source code. One embodiment of the SDE includes: (1) a parser configured to partition an integrated source code into a host code partition and a device code partition, the host code partition including a reference to a device variable, (2) a translator configured to: (2a) embed device machine code, compiled based on the device code partition, into a modified host code, (2b) define a pointer in the modified host code configured to be initialized, upon execution of the integrated source code, to a memory address allocated to the device variable, and (2c) replace the reference with a dereference to the pointer, and (3) a host compiler configured to employ a host library to compile the modified host code.
Abstract:
The present invention facilitates efficient and effective utilization of unified virtual addresses across multiple components. In one exemplary implementation, an address allocation process comprises: establishing space for managed pointers across a plurality of memories, including allocating one of the managed pointers with a first portion of memory associated with a first one of a plurality of processors; and performing a process of automatically managing accesses to the managed pointers across the plurality of processors and corresponding memories. The automated management can include ensuring consistent information associated with the managed pointers is copied from the first portion of memory to a second portion of memory associated with a second one of the plurality of processors based upon initiation of an accesses to the managed pointers from the second one of the plurality of processors.
Abstract:
Apparatuses, systems, and techniques to modify graphs. In at least one embodiment, a processor comprises one or more circuits to modify an execution order of at least one graph portion.
Abstract:
Apparatuses, systems, and techniques to control operation of a memory cache. In at least one embodiment, cache guidance is specified within application source code by associating guidance with declaration of a memory block, and then applying specified guidance to source code statements that access said memory block.
Abstract:
A software development environment (SDE) and a method of compiling integrated source code. One embodiment of the SDE includes: (1) a parser configured to partition an integrated source code into a host code partition and a device code partition, the host code partition including a reference to a device variable, (2) a translator configured to: (2a) embed device machine code, compiled based on the device code partition, into a modified host code, (2b) define a pointer in the modified host code configured to be initialized, upon execution of the integrated source code, to a memory address allocated to the device variable, and (2c) replace the reference with a dereference to the pointer, and (3) a host compiler configured to employ a host library to compile the modified host code.
Abstract:
Techniques are disclosed for reducing the latency between the completion of a producer task and the launch of a consumer task dependent on the producer task. Such latency exists when the information needed to launch the consumer task is unavailable when the producer task completes. Thus, various techniques are disclosed, where a task management unit initiates the retrieval of the information needed to launch the consumer task from memory in parallel with the producer task being launched. Because the retrieval of such information is initiated in parallel with the launch of the producer task, the information is often available when the producer task completes, thus allowing for the consumer task to be launched without delay. The disclosed techniques, therefore, enable the latency between completing the producer task and launching the consumer task to be reduced.
Abstract:
Apparatuses, systems, and techniques for performing nested kernel execution within a parallel processing subsystem. In at least one embodiment, a parent thread launches a nested child grid on the parallel processing subsystem, and enables the parent thread to perform a thread synchronization barrier on the child grid for proper execution semantics between the parent thread and the child grid.