摘要:
A variable optical attenuator device is provided for modulating an optical signal. The attenuator device includes a variable attenuation assembly with an electrochromic structure interposed between a first electrode and a second electrode. The electrochromic structure is configured to reversibly change its optical characteristics from a bleached off state to a colored active state under the influence of an electrical potential applied to the first and second electrodes to thereby modulate the optical signal. The optical attenuator device includes at least one lens attached to the variable attenuation assembly. The lens cooperates with the variable attenuation assembly to direct the optical signal towards the electrochromic structure. Waveguides such as optical fibers define ports at the outer endface of the lens for the optical signal.
摘要:
A flexible panel is provided that is easily and conformingly applied to a curved display screen of a VDU to afford, in a lightweight manner, variably adjustable contrast enhancement of the VDU while simultaneously providing a decrease in the amount of ambient light reflected from the curved display screen. The flexible panel is a glass microsheet layered, on one side thereof, with an antireflection coating and, on the other side, with an electrochromic device. The electrochrmic device allows for variable adjustment of the contrast of the VDU as a function of the voltage applied across the electrochromic device. The flexible glass microsheet dually possesses the advantages of conventional rigid glass panels, such as excellent optical performance, high durability, capability of being coated with various optical coatings under extreme temperature, pressure and chemical conditions and the additional benfeit of physical flexibility. This flexibility allows for easy application to variously sized and shaped curved VDU display screens. The electrochromic device is a six-layered structure deposited, in order from the layer adjacent the panel: a 1 quarter wavelength (QW) alumina layer; a first indium-tin-oxide (ITO) layer; a tungsten trioxide (WO.sub.3) layer; a tantalum pentoxide (Ta.sub.2 O.sub.5) layer; a nickel-oxide (NiO) layer; and a second indium-tin-oxide (ITO) layer.
摘要:
The present invention is directed to method for manufacturing electrochromic devices using laser ablation techniques. More specifically, the present invention uses laser ablation to provide a simple, noncontact method of patterning electrochromic devices to a controlled depth, to form an electrochromically active area. Furthermore, laser patterning is conducive to the formation of multiple electrochromic devices on a single substrate.
摘要:
Polymeric coating materials used to protect electrochromic devices from environmental and mechanical damage are provided. The protective polymeric coating materials are physically, chemically and optically compatible with the electrochromic cell layers of electrochromic devices. The polymeric coating materials are polymers having generic polymer back-bones selected from the group of polyimides, polybenzimidazoles, polybenzothiazoles, polybenzoxazoles, poly(phenylene ethers), polyquinolines, polycarbonates, and polysulfones.
摘要:
The present invention is directed to a polymeric coating material used to protect electrochromic devices from environmental and mechanical damage. The protective polymeric coating material in the present invention are physically, chemically and optically compatible with the electrochromic cell layers. The polymeric coating materials in the present invention are polymers having generic polymer back-bones selected from the group consisting of polyimides, polybenzimidazoles, polybenzothiazoles, polybenzoxazoles, poly(phenylene ethers), polyquinolines, polycarbonates and polysulfones.
摘要:
A method of controlling an ultra-short pulse system is described comprising controlling an optical power within the ultra-short pulse system and control-system controlling a width of an optical pulse. In some embodiments, the method also comprises tuning a compressor by controlling a number of passes of the optical pulse through a Bragg grating to control the width of the optical pulse output from the compressor. In other embodiments, the method may comprise tuning a multi-pass stretcher by controlling a number of passes of the optical pulse through a loop of the multi-pass stretcher to control the width of the optical pulse output from the multi-pass stretcher. A method of controlling an ultra-short pulse system may also comprise accessing a control system from a remotely located command station, communicating status information from the control system to the command station, and communicating information from the command station to the control system.
摘要:
Polymeric coating materials used to protect electrochromic devices from environmental and mechanical damage arc provided. The protective polymeric coating materials are physically, chemically and optically compatible with the electrochromic cell layers of electrochromic devices. The polymeric coating materials are polymers having generic polymer back-bones selected from the group of polyimides, polybenzimidazoles, polybenzothiazoles, polybenzoxazoles, poly(phenylene ethers), polyquinolines, polycarbonates, and polysulfones.
摘要:
A sunglass lens having improved anti-reflection and transmittance comprises a lens-shaped substrate and a coating formed on the concave surface of the lens. The first layer deposited adjacent to the concave surface of the lens comprises a titanium suboxide material, the second layer comprises a material having a high refractive index, and the third layer comprises a material having a low refractive index.
摘要:
The present invention is directed to methods and apparatus for enhancing the performance of visual display units which utilize plasma display panels. More specifically, the present invention provides methods and apparatus for providing an electrical noise suppressing/chromaticity enhancing accessory device for positioning in front of the viewing surface of a plasma display panel. In its most basic embodiment, the accessory device of the present invention comprises a first and a second rigid substrate laminated together by a laminating layer; an optically selective coating providing high photopic transmittance, continuous high electrical conductivity for RFI shielding, and reflectivity specifically within the near-IR region that is mechanically protected by being sandwiched between one rigid substrate and the laminating layer; and, a multiple-dye coating for selectively absorbing IR energy emissions and selectively balancing the chromaticity of the PDP display. The combination of the IR absorption and color-correction due to the multiple-dye coating and the near-IR reflectivity due to the optically selective coating surprisingly results in very good suppression of IR emissions from the PDP within the spectral range of about 800 to about 2500 nm and chromaticity enhancement while simultaneously maintaining good photopic transmittance.
摘要:
The present invention is directed to apparatus for enhancing the performance of visual display units which utilize plasma display panels. More specifically, the present invention provides apparatus for providing an electrical noise suppressing/chromaticity enhancing accessory device for positioning in front of the viewing surface of a plasma display panel (PDP). In its most basic embodiment, the accessory device of the present invention comprises an optically selective coating providing high photopic transmittance, continuous high electrical conductivity for RFI shielding, and reflectivity specifically within the near-IR region. It also preferably includes a multiple-dye coating for selectively absorbing IR energy emissions and selectively balancing the chromaticity of the PDP display and a plastic substrate layer to provide impact resistance. The combination of the IR absorption and color-correction due to the multiple-dye coating and the near-IR reflectivity due to the optically selective coating surprisingly results in very good suppression of IR emissions from the PDP within the spectral range of about 800 to about 2500 nm and chromaticity enhancement while simultaneously maintaining good photopic transmittance.