摘要:
An air conditioning system for a semiconductor clean room includes a chemical filter between an air conditioner including a humidifier and a ULPA filter of the clean room, for ionizing chemical impurities using moisture supplied from the humidifier and then adsorbing the ionized chemical impurities by using the chemical filter. The chemical filter is installed downstream of the humidifier, which applies phosphoric acid for the prevention of scale-formation. This downstream location allows the chemical filter to prevent the phosphoric acid from being included in the fresh air as a new chemical impurity, which makes regulation of temperature and humidity of the air possible without having to use a special and expensive pure steam system.
摘要:
Methods of analyzing water-soluble contaminants comprise providing reference air streams having gaseous water present therein; condensing the reference air streams such that the gaseous water liquefies; pressurizing the liquefied water; and supplying the liquefied water to analyzers. Systems for analyzing water-soluble contaminants comprise air inlets that absorb reference air containing gaseous water therein; valves that control the flow of the reference air in fluid communication with the air inlets; condensers that condense the gaseous water in the reference air in fluid communication with the valves; pressurization pumps that pressurize the water condensed from the reference air in fluid communication with the condensers; and discharge pumps that discharge an excessive amount of water contained in the reference air.
摘要:
An analysis system and method for a cleanroom environment is disclosed wherein on-line testing of water-soluble contaminants is performed by condensing water vapor from an air sample taken from the clean room. The condenser is connected to a analyzing unit that is used to measure and analyze the water-soluble contaminants in the condensed water received from the condensing unit.
摘要:
A wafer transfer system, and method of controlling pressure in the system, includes a loadport for receiving a wafer container, a housing operably connected to the loadport, a wafer transfer mechanism for transferring a wafer between the wafer container and the housing, a wafer container sensor for detecting a presence of the wafer container on the loadport, a variable speed fan disposed in a first portion of the housing, a variable exhaust unit disposed in a second portion of the housing facing the first portion, the variable exhaust unit being capable of varying an exhaust rate of air from the housing, and a controller for variably operating the variable speed fan and the variable exhaust unit in response to a signal from the wafer container sensor.
摘要:
A wafer transfer system, and method of controlling pressure in the system, includes a loadport for receiving a wafer container, a housing operably connected to the loadport, a wafer transfer mechanism for transferring a wafer between the wafer container and the housing, a wafer container sensor for detecting a presence of the wafer container on the loadport, a variable speed fan disposed in a first portion of the housing, a variable exhaust unit disposed in a second portion of the housing facing the first portion, the variable exhaust unit being capable of varying an exhaust rate of air from the housing, and a controller for variably operating the variable speed fan and the variable exhaust unit in response to a signal from the wafer container sensor.
摘要:
A wafer transfer system, and method of controlling pressure in the system, includes a loadport for receiving a wafer container, a housing operably connected to the loadport, a wafer transfer mechanism for transferring a wafer between the wafer container and the housing, a wafer container sensor for detecting a presence of the wafer container on the loadport, a variable speed fan disposed in a first portion of the housing, a variable exhaust unit disposed in a second portion of the housing facing the first portion, the variable exhaust unit being capable of varying an exhaust rate of air from the housing, and a controller for variably operating the variable speed fan and the variable exhaust unit in response to a signal from the wafer container sensor.
摘要:
A monitoring device and a driving control system for a fan filter unit in a semiconductor clean room for monitoring the operating state of the fan filter unit. The monitoring device includes a switching section in each fan filter unit which alternately applies electrical power to one of a plurality of terminals. The switching section is responsive to a force from an air stream introduced therein via rotation of a fan in the fan filter unit. A display section in each fan filter unit is connected to the plurality of terminals which provide different signals, indicative of an on or off state of the fan, according to which of the plurality of terminals is electrically connected to the electrical power.
摘要:
A fan drive checking system, for an air conditioning system in a clean room having a fan filter unit (FFU), includes a flow sensor for sensing air flow inside a housing of a FFU. The sensor provides a sensor signal indicative of normal and adverse flow conditions in the housing. A control portion in data communication with the sensor outputs a control signal responsive to the sensing signal. An alarm in data communication with the control portion provides a warning when the control signal indicates the adverse flow condition.
摘要:
A wafer transfer system, and method of controlling pressure in the system, includes a loadport for receiving a wafer container, a housing operably connected to the loadport, a wafer transfer mechanism for transferring a wafer between the wafer container and the housing, a wafer container sensor for detecting a presence of the wafer container on the loadport, a variable speed fan disposed in a first portion of the housing, a variable exhaust unit disposed in a second portion of the housing facing the first portion, the variable exhaust unit being capable of varying an exhaust rate of air from the housing, and a controller for variably operating the variable speed fan and the variable exhaust unit in response to a signal from the wafer container sensor.
摘要:
Compositions for making ultrapure water in microelectronic device fabrication processes comprise hydrogen peroxide, peracetic acid, and water. Methods of sterilizing ultrapure water delivery systems for use in microelectronic device fabrication processes comprise contacting ultrapure water delivery systems with water having temperatures ranging from about 26.degree. C. to about 40.degree. C.; and sterilizing the ultrapure water delivery systems with compositions comprising hydrogen peroxide, peracetic acid, and water. The ultrapure water delivery systems comprise water tanks, heat exchangers in fluid communication with the water tanks, ultraviolet sterilizers in fluid communication with the heat exchangers, OR-polishers in fluid communication with the ultraviolet sterilizers, MB-polishers in fluid communication with the OR-polishers, and ultrafilters in fluid communication with the OR-polishers. The compositions employed in the sterilizing step do not contact the OR-polishers and the MB-polishers.