摘要:
A self-assembled freestanding graphene membrane or graphene layer is formed from industrial graphene having a particle size from approximately 1 to 10 microns and cellulose nanofibers having a nanofiber size from approximately 1 to 9 microns. The self-assembled freestanding graphene membrane or graphene layer has a graphene to cellulose nanofiber mass ratio of approximately 12:1 to 20:1, an electrical conductivity of between approximately 5.8 and 7.2 S/cm, and a thermal conductivity of between 2000 and 3000 W m−1 K−1. The freestanding graphene membrane or graphene layer is formed from an aqueous dispersion of graphene and cellulose nanofibers in a mass ratio of graphene to cellulose nanofibers of 20:1 to 10:1 deposited on a substrate followed by self-assembly and drying. A dopant of oxygen, nitrogen, sulfur, nickel, gold, silver, zinc, copper, magnesium, and boron may be precisely incorporated into the graphene membrane or layer.
摘要:
A cure-on-demand adhesive kit capable of self-sustaining frontal polymerization after a heat or actinic radiation trigger for bonding two substrates is provided. The kit includes a first monomer/oligomer component and a UV or thermal cure catalyst component. In practical application, the first monomer/oligomer component and the UV or thermal cure catalyst component are mixed together to form a ready-to-use prepolymer mixture. The prepolymer mixture is applied onto the surface of a first substrate, and the first substrate is contacted with a second substrate by the mixture applied side. After giving a heat or actinic radiation trigger, a self-sustaining frontal polymerization of the mixture will be started for curing the mixture between two substrates as an adhesive to adhere the two substrates.
摘要:
The preset invention provides an electrode structure for a lithium ion battery comprising an electrode selected from a cathode including a lithium-based material or an anode including a conductive material, and a melt-convertible encapsulation layer covering at least one surface layer of the electrode. The melt-convertible encapsulation layer comprises a network of nanofibers having the diameter ranging approximately from 100 to 300 nm and polymer microspheres embedded in and coated on the nanofibrous network, wherein the ratio of the diameter of the polymer microspheres to the diameter of the nanofiber is over 30. The polymer microspheres melt to form a dielectric coating of the electrode so as to prevent fire or thermal runaway at a temperature approximately from 100 to 200° C.
摘要:
The invention relates to multi-component shape memory threads, fibers, tubes, or tapes, which includes at least two shape-memory polymeric (SMP-N) components. Each of the at least two SMP-N components is of at least 1% of the total weight, and N is a positive integer starting from 1, and the SMP-N components have a selectively engineered shape recovery temperature (Tr) between approximately 0° C. to 130° C. Also, when TrN and TrN+1 are higher than room temperature, the threads, fibers, tubes, or tapes are configured to assume a substantially helical configuration upon heating to above TrN and lower than TrN+1 by a stimulus when an elongation of the threads, fibers, tubes, or tapes is approximately 30% to approximately 300%, and having a coil diameter from 0.5 to 10 mm and a number of the turns per cm from 5 to 30.
摘要:
This invention provides a method for fabricating a flexible porous film. One application of the film is for fabricating a flexible lithium-ion battery. The method comprises depositing at least one electrospun layer on a flexible substrate sheet by electrospinning. The solution used in electrospinning comprises polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) copolymer dispersed in a solvent such that the solution has a polymer viscosity between 300 cP to 1500 cP. A preferred setting of electrospinning process parameters includes a voltage between 20 kV and 50 kV, a feed rate between 3 ml/h and 12 ml/h, and a spinning height between 100 mm and 150 mm. Preferably, PVDF and PVdF-HFP has a weight ratio between 1:1 and 5:1. The solvent may comprise dimethylformamide (DMF) and acetone in a weight ratio between 1:2 and 8:2. The weight of the copolymer is preferable to be 5% to 25% of a total weight of the copolymer and the solvent.
摘要:
A solar-powered position tracker includes a load including one or more of a GPS module, a GPS antenna, a GSM module, or a GSM antenna. The load is powered by a rechargeable battery, which may be charged by one or more of a non-rechargeable primary battery and a solar cell. The solar-powered position tracker includes a battery management system for powering the position tracker by controlling the solar cell, rechargeable battery and the non-rechargeable primary battery. The two-stage battery management system charges the rechargeable battery in two stages and includes a solar management and protection circuit interconnecting the solar cell, and the rechargeable battery. The battery management system is configured to execute a charging process for recharging the rechargeable battery from solar cell and protect the rechargeable battery under a high pulse current discharge process to meet a high current or high pulse current discharge demand by the load.
摘要:
A fast charge lithium ion battery capable of being charged or discharged with 80% capacity retention at C rate of at least 2C is provided in the present invention, which includes a fast charge graphite-based anode; a cathode; and a separator, wherein the anode includes an anode current collector and a fast charge graphite layer deposited on at least one surface of the anode current collector, the fast charge graphite having a lattice constant equals to or larger than 0.3374 nm, a D-band to G-band integrated area ratio (ID/IG) of 0.03 to 0.3, and a surface morphology of a plate-like crystal structure under a scanned electron microscope; the cathode includes a cathode current collector and one or more active materials deposited on at least one surface of the cathode current collector.
摘要:
The present invention is to provide a lithium titanate (LTO) material for a lithium ion battery. The LTO material has hierarchical micro/nano architecture, and comprises a plurality of micron-sized secondary LTO spheres, and a plurality of pores incorporated with metal formed by a metal dopant. Each of the micron-sized secondary LTO spheres comprises a plurality of nano-sized primary LTO particles. A plurality of the nano-sized primary LTO particles is encapsulated by a non-metal layer formed by a non-metal dopant. The LTO material of the present invention has high electrical conductivity for increasing the capacity at high charging/discharging rates, and energy storage capacity.
摘要:
The present invention provides an energy absorbing foam material includes at least one shape memory polymer foam having a non-impact resistant configuration in a first force-application time, an impact resistant configuration in a second force-application time at a working temperature, a first glass transition temperature equal to or lower than a working temperature in the first force-application time, and a second glass transition temperature higher than a working temperature in the second force-application time. A second elastic modulus of the shape memory polymer foam in the second force-application time is at least 10 times than a first elastic modulus of the shape memory polymer form in the first force-application time at the working temperature.
摘要:
The present invention provides an EMI shielding device including a flame retarding, thermal interface material composite with a through plane thermal conductivity of no less than 30 W/mK and a dielectric withstanding voltage of no less than 1 kV/mm, where the composite includes at least one dielectric layer of self-aligned, carbon-based materials associated with superparamagnetic particles and at least one layer of fillers including a blend of dielectric heat transfer materials with a thermal or UV curable polymer or phase change polymer. The anisotropic heat transfer carbon-based materials associated with superparamagnetic materials are aligned under a low magnetic field strength of less than 1 Tesla to an orientation that results in a high thermal conductivity direction which can conduct the maximum heat from the adjacent device of the present composite. The present invention also provides a method for preparing the composite.