摘要:
An aluminate phosphor comprising (a) at least one element selected from the group consisting of Ba, Sr and Ca, (b) Eu, (c) Mg and/or Zn, (d) optionally Mn and (e) Al, said aluminate phosphor comprising a crystalline inorganic compound which shows, in its powder X-ray diffraction pattern upon incidence of X-rays of CuK.alpha..sub.1, no peak at Miller index 008 independent of a diffraction peak at Miller index 110.
摘要:
To achieve a light-emitting device emitting light with high brightness, closer to natural light, and less color shift due to a small change in intensity of emitted light, in a light-emitting device including a light source emitting light by driving current and at least one wavelength-converting material absorbing at least part of the light from the light source and emitting light having a different wavelength, the color coordinate x1(17.5) and the color coordinate y1(17.5) of the light emitted at a driving current density of 17.5 A/cm2 and the color coordinate x1(70) and the color coordinate y1(70) of the light emitted at a driving current density of 70 A/cm2 satisfy the following Expressions (D) and (E): −0.006≦x1(17.5)−x1(70)≦0.006 (D), −0.006≦y1(17.5)−y1(70)≦0.006 (E).
摘要:
To present a green- to yellow-emitting phosphor whereby a light-emitting device having high color rendering properties and high luminance can be obtained, a light-emitting device employing such a phosphor, and an image display device and a lighting system, containing such a light-emitting device.A phosphor made of a compound represented by the following formula (I), which comprises, as matrix, a compound of a garnet structure and which contains, as a luminescent center ion, a metal element in the matrix: M1aM2bXcM3dM43Oe (I) wherein M1 is Mg and/or Zn, M2 is a bivalent metal element excluding Mg and Zn, X is a metal element as a luminescent center ion composed mainly of Ce, M3 is a trivalent metal element excluding X, M4 is a tetravalent metal element, and a, b, c, d and e are numbers satisfying the following formulae, respectively: 0.001≦a≦0.5 2.5≦b≦3.3 0.005≦c≦0.5 1.5≦d≦2.3 e={(a+b)×2+(c+d)×3+12}/2.
摘要:
To present a green- to yellow-emitting phosphor whereby a light-emitting device having high color rendering properties and high luminance can be obtained, a light-emitting device employing such a phosphor, and an image display device and a lighting system, containing such a light-emitting device.A phosphor made of a compound represented by the following formula (I), which comprises, as matrix, a compound of a garnet structure and which contains, as a luminescent center ion, a metal element in the matrix: M1aM2bXcM3dM43Oe (I) wherein M1 is Mg and/or Zn, M2 is a bivalent metal element excluding Mg and Zn, X is a metal element as a luminescent center ion composed mainly of Ce, M3 is a trivalent metal element excluding X, M4 is a tetravalent metal element, and a, b, c, d and e are numbers satisfying the following formulae, respectively: 0.001≦a≦0.5 2.5≦b≦3.3 0.005≦c≦0.5 1.5≦d≦2.3 e={(a+b)×2+(c+d)×3+12}/2.
摘要:
The present invention relates to a phosphor represented by the following general formula (I), comprising: a composite oxide containing a divalent and trivalent metal elements as a host crystal; and at least Ce as an activator element in said host crystal, wherein the phosphor has a maximum emission peak in a wavelength range of from 485 nm to 555 nm in the emission spectrum at room temperature: M1aM2bM3cOd (I) wherein M1 represents an activator element containing at least Ce; M2 represents a divalent metal element; M3 represents a trivalent metal element; a is a number within a range of 0.0001≦a≦0.2; b is a number within a range of 0.8≦b≦1.2; c is a number within a range of 1.6≦c≦2.4; and d is a number within a range of 3.2≦d≦4.8. Further, a light emitting device comprising said phosphor and a display and a lighting system having said light emitting device as a light source are disclosed. In accordance with the present invention, a phosphor which can be easily produced and can provide a light emitting device having a high color rendering, a light emitting device comprising the phosphor, and a display and a lighting system comprising the light emitting device as a light source can be provided.
摘要:
To enhance luminance and color rendering of a light emitting device comprising phosphors as wavelength converting material and at least one semiconductor light emitting device that emits visible light, as said phosphors, are used phosphors which are one or more kinds of phosphors selected from a group consisting of oxides, oxynitrides and nitrides, and are a mixture consisting of two or more kinds of phosphors whose luminous efficiency is 35% or higher when excited by the visible light from said semiconductor light emitting device at room temperature. In addition, said mixture contains a first phosphor, and a second phosphor that is different from said first phosphor and capable of absorbing emitted light from said first phosphor, and said first phosphor is contained 85 weight % or more of said mixture of phosphors.
摘要:
To achieve a light-emitting device emitting light with high brightness, closer to natural light, and less color shift due to a small change in intensity of emitted light, in a light-emitting device including a light source emitting light by driving current and at least one wavelength-converting material absorbing at least part of the light from the light source and emitting light having a different wavelength, the color coordinate x1(17.5) and the color coordinate y1(17.5) of the light emitted at a driving current density of 17.5 A/cm2 and the color coordinate x1(70) and the color coordinate y1(70) of the light emitted at a driving current density of 70 A/cm2 satisfy the following Expressions (D) and (E): −0.006≦x1(17.5)−x1(70)≦0.006 (D), −0.006≦y1(17.5)−y1(70)≦0.006 (E).
摘要:
A phosphor (A) comprising a host material composed of a compound having a garnet crystal structure represented by the general formula (I): M1aM2bM3cOd (I) (wherein M1 is a divalent metal element, M2 is a trivalent metal element, M3 is a tetravalent metal element containing at least Si, a is the number of 2.7 to 3.3, b is the number of 1.8 to 2.2, c is the number of 2.7 to 3.3, and d is the number of 11.0 to 13.0), and a luminescent center ion incorporated in the host material; a light emitting device (B) comprising the phosphor as a wavelength conversion material and a semiconductor light emitting element capable of emitting a light in the range of from ultraviolet light to visible light; and a display (C) and a lighting system (D) using the light emitting device (B) as a light source. The above phosphor can be readily produced, and can provide a light emitting device having a high color rendering property.
摘要:
The present invention relates to a phosphor that satisfies requirements (1) to (3): (1) the phosphor satisfies Formula [2] and/or Formula [3]: 85≦{R455(125)/R455(25)}×100
摘要:
The present invention relates to a phosphor represented by the following general formula (I), comprising: a composite oxide containing a divalent and trivalent metal elements as a host crystal; and at least Ce as an activator element in said host crystal, wherein the phosphor has a maximum emission peak in a wavelength range of from 485 nm to 555 nm in the emission spectrum at room temperature: M1aM2bM3cOd (I) wherein M1 represents an activator element containing at least Ce; M2 represents a divalent metal element; M3 represents a trivalent metal element; a is a number within a range of 0.0001≦a≦0.2; b is a number within a range of 0.8≦b≦1.2; c is a number within a range of 1.6≦c≦2.4; and d is a number within a range of 3.2≦d≦4.8. Further, a light emitting device comprising said phosphor and a display and a lighting system having said light emitting device as a light source are disclosed. In accordance with the present invention, a phosphor which can be easily produced and can provide a light emitting device having a high color rendering, a light emitting device comprising the phosphor, and a display and a lighting system comprising the light emitting device as a light source can be provided.