摘要:
The present invention relates to an electron emitting device having a structure for efficiently emitting electrons. The electron emitting device has a substrate comprised of an n-type diamond, and a pointed projection provided on the substrate. The projection comprises a base provided on the substrate side, and an electron emission portion provided on the base and emitting electrons from the tip thereof. The base is comprised of an n-type diamond. The electron emission portion is comprised of a p-type diamond. The length from the tip of the projection (electron emission portion) to the interface between the base and the electron emission portion is preferably 100 nm or less.
摘要:
The present invention relates to an electron emitting device having a structure for efficiently emitting electrons. The electron emitting device has a substrate comprised of an n-type diamond, and a pointed projection provided on the substrate. The projection comprises a base provided on the substrate side, and an electron emission portion provided on the base and emitting electrons from the tip thereof. The base is comprised of an n-type diamond. The electron emission portion is comprised of a p-type diamond. The length from the tip of the projection (electron emission portion) to the interface between the base and the electron emission portion is preferably 100 nm or less.
摘要:
The present invention relates to an electron emitting device having a structure for efficiently emitting electrons. The electron emitting device has a substrate comprised of an n-type diamond, and a pointed projection provided on the substrate. The projection comprises a base provided on the substrate side, and an electron emission portion provided on the base and emitting electrons from the tip thereof. The base is comprised of an n-type diamond. The electron emission portion is comprised of a p-type diamond. The length from the tip of the projection (electron emission portion) to the interface between the base and the electron emission portion is preferably 100 nm or less.
摘要:
The present invention relates to an electron emitting device having a structure for efficiently emitting electrons. The electron emitting device has a substrate comprised of an n-type diamond, and a pointed projection provided on the substrate. The projection comprises a base provided on the substrate side, and an electron emission portion provided on the base and emitting electrons from the tip thereof. The base is comprised of an n-type diamond. The electron emission portion is comprised of a p-type diamond. The length from the tip of the projection (electron emission portion) to the interface between the base and the electron emission portion is preferably 100 nm or less.
摘要:
A method for production includes a step for forming concave molds on a surface of a substrate and a step for growing a diamond heteroepitaxially on the substrate in an atmosphere containing a doping material. The crystal structure of the slope of the concave molds of the substrate can have the cubic system crystal orientation (111), and the doping material is phosphorous. Further, the substrate is Si, and the slope of the molds can be the Si(111) face. The diamond electron emission device contains projection parts on the surface thereof, where a slope of the projection parts 1 contains a diamond (111) face, and flat parts 2, which are not the projection parts, contain face orientations other than (100) face or (110) face and grain boundaries.
摘要:
A method for production includes a step for forming concaved molds on a surface of a substrate and a step for growing a diamond heteroepitaxially on the substrate in an atmosphere containing a doping material. The crystal structure of the slope of the concaved molds of the substrate can have the cubic system crystal orientation (111), and the doping material is phosphorous. Further, the substrate is Si, and the slope of the molds can be the Si (111) face. The diamond electron emission device contains projection parts on the surface thereof, where a slope of the projection parts 1 contains a diamond (111) face, and flat parts 2, which are not the projection parts, contain face orientations other than (100) face or (110) face and grain boundaries.
摘要:
An electron emitting device 2 comprises an electron emitting portion 6 made of diamond. At an electron emission current value of 10 μA or more, a deviation of the electron emission current value over one hour is within ±20% in the electron emitting device 2. The number of occurrence of step-like noise changing the electron emission current value stepwise is once or less per 10 minutes.
摘要:
An electron emission device which is smaller, able to operate at lower voltage and more efficient than the conventional device is provided. The device contains a light emitting device to irradiate light to a cathode wherein at least an electron emission face of the cathode is made of diamond. By composing the device in such a way, the voltage to draw out electrons can be lowered with a wide margin compared to the conventional device, and thus a small device which can be operated with low voltage may be obtained. The light emitting device can be formed as one unit with the cathode and it can also be that the light emitting device and the electrode are made of diamond. Furthermore, the electron emission face of the cathode is preferably an n- or p-type diamond semiconductor.
摘要:
A logical operation element and logical operation circuit are provided that are capable of high speed and a high degree of integration.A logical operation circuit has a construction wherein, in a logical operation element, the anodes of first and second field emission type microfabricated electron emitters are put at the same potential and two or more signal voltages are input to gate electrodes corresponding to these emitters. A NOR element so arranged that when a high potential input signal is input to either of the two lines, electron emission occurs from the emitters and the potential of said anodes is lowered, and a NAND element wherein the cathodes of the first and second field emission type microfabricated electron emitters are connected in series, two signal voltages are applied to the gate electrodes corresponding to the first and second emitter and the anode potential of the second emitter is lowered when the two input signals are high potential are employed.
摘要:
An electron emitting device 2 comprises an electron emitting portion 6 made of diamond. At an electron emission current value of 10 μA or more, a deviation of the electron emission current value over one hour is within ±20% in the electron emitting device 2. The number of occurrence of step-like noise changing the electron emission current value stepwise is once or less per 10 minutes.