摘要:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
摘要:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
摘要:
A localization and obstacle detection system includes a first signal projector configured to project a first signal into an environment and a robot configured to move in the environment. The robot includes a second signal projector configured to project a second signal into the environment; a signal receiver configured to receive the first signal and the second signal; a localizer configured to determine a location of the robot in the environment based at least in part on the received first signal; and a detector configured to determine the presence of an obstacle in the environment based at least in part on the intensity and bearing of the received second signal and without touching the obstacle; wherein the second signal is distinct from the first signal in at least one characteristic.
摘要:
A localization and obstacle detection system comprising a first signal projector configured to project a first signal into an environment and a robot configured to move in the environment. The robot comprises a second signal projector configured to project a second signal into the environment; a signal receiver configured to receive the first signal and the second signal; a localizer configured to determine a location of the robot in the environment based at least in part on the received first signal; and a detector configured to determine the presence of an obstacle in the environment based at least in part on the intensity and bearing of the received second signal and without touching the obstacle; wherein the second signal is distinct from the first signal in at least one characteristic.
摘要:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
摘要:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
摘要:
A mobile robot configured to travel across a residential floor or other surface while cleaning the surface with a cleaning pad and cleaning solvent is disclosed. The robot includes a controller for managing the movement of the robot as well as the treatment of the surface with a cleaning solvent. The movement of the robot can be characterized by a class of trajectories that achieve effective cleaning. The trajectories include sequences of steps that are repeated, the sequences including forward and backward motion and optional left and right motion along arcuate paths.
摘要:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
摘要:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
摘要:
Cleaning devices which use cleaning sheets affixed in traps are disclosed. The traps comprise first and second jaws, each comprising base and forward portions, each forward position having a forward surface. The forward portion of the second jaw is flexible in at least a first direction, such as towards a surface over which the device is configured to move. When the second jaw is relaxed, the forward portion of the second jaw is substantially coplanar with the forward portion of the first jaw and the forward surfaces are proximate or touching. When the second jaw is flexed in the first direction (e.g., by the application of a force from a user), the forward surface of the forward portion of the second jaw moves in the first direction, away from the forward surface of the first jaw. This opens a gap through which a portion of a sheet may be inserted.