High resistance silicon wafer and method for production thereof
    1.
    发明申请
    High resistance silicon wafer and method for production thereof 有权
    高电阻硅晶片及其制造方法

    公开(公告)号:US20050253221A1

    公开(公告)日:2005-11-17

    申请号:US10512405

    申请日:2003-04-16

    CPC分类号: H01L21/3225

    摘要: A high-resistance silicon wafer is manufactured in which a gettering ability, mechanical strength, and economical efficiency are excellent and an oxygen thermal donor is effectively prevented from being generated in a heat treatment for forming a circuit, which is implemented on the side of a device maker. A heat treatment for forming an oxygen precipitate nucleus is performed at 500 to 900° C. for 5 hours or more in a non-oxidizing atmosphere and a heat treatment for growing an oxygen precipitate is performed at 950 to 1050° C. for 10 hours or more on a high-oxygen and carbon-doped high-resistance silicon wafer in which resistivity is 100 Ωcm or more, an oxygen concentration is 14×1017 atoms/cm3 (ASTM F-121, 1979) or more and a carbon concentration is 0.5×1016 atoms/cm3 or more. By these heat treatments, a remaining oxygen concentration in the wafer is controlled to be 12×1017 atoms/cm3 (ASTM F-121, 1979) or less. Thus, there is provided a high-resistance, low-oxygen and high-strength silicon wafer in which resistivity is 100 Ωcm or more and an oxygen precipitate (BMD) having a size of 0.2 μm is formed so as to have high density of 1×104/cm2 or more.

    摘要翻译: 制造高电阻硅晶片,其中吸收能力,机械强度和经济效率优异,并且在用于形成电路的热处理中有效地防止了氧热供体的产生,该电路在 设备制造商。 在非氧化性气氛中,在500〜900℃下进行形成氧沉淀核的热处理5小时以上,在950〜1050℃下进行氧沉淀的热处理10小时 以上,电阻率为100Ωm以上的高氧和碳掺杂高电阻硅晶片,氧浓度为14×10 17原子/ cm 3(以下) ASTM F-121,1979)或更高,碳浓度为0.5×10 16原子/ cm 3以上。 通过这些热处理,将晶片中的剩余氧浓度控制为12×10 17原子/ cm 3(ASTM F-121,1979)或更小。 因此,提供了电阻率为100Ωm或更大的高电阻,低氧和高强度硅晶片,并且形成具有0.2μm大小的氧沉淀物(BMD),以便具有高密度的1×10 4/4以上。

    Single crystal material supplying apparatus and single crystal material supplying method
    2.
    发明授权
    Single crystal material supplying apparatus and single crystal material supplying method 失效
    单晶材料供应装置和单晶材料供应方法

    公开(公告)号:US06423137B1

    公开(公告)日:2002-07-23

    申请号:US09403626

    申请日:1999-11-05

    申请人: Nobumitsu Takase

    发明人: Nobumitsu Takase

    IPC分类号: C30B1530

    CPC分类号: C30B15/02 Y10T117/1056

    摘要: The present invention aims to prevent solidification of a melt in a feeding pipe without providing heating means such as heater or heat keeping means such as heat insulating material on outer periphery of the feeding pipe when the melt is supplied from an auxiliary crucible into a main crucible via the feeding pipe by overflow. At the center of the auxiliary crucible 1 made of quartz, a pipe 1a for feeding the melt from the auxiliary crucible 1 to the main crucible 11 by overflow is formed. When the raw material in the auxiliary crucible is melted, it is designed in such manner that the raw material is not continuously supplied to the auxiliary crucible but it is supplied in such quantity that the melt overflows intermittently into an opening on the upper end of the pipe 1a from the auxiliary crucible 1 into the main crucible 11.

    摘要翻译: 本发明的目的是防止在将熔体从辅助坩埚供应到主坩埚中时,在馈送管的外周上不设置加热装置或诸如隔热材料的保温装置等加热装置, 通过供水管溢流。 在由石英制成的辅助坩埚1的中心处,形成有用于通过溢流将熔融物从辅助坩埚1供给主坩埚11的管1a。 当辅助坩埚中的原料熔化时,其原料被设计成使得原料不被连续地供应到辅助坩埚,而是以这样的量供应,使得熔体间歇地溢出到 管1a从辅助坩埚1进入主坩埚11。

    Method for growing silicon single crystal and method for manufacturing silicon wafer
    3.
    发明申请
    Method for growing silicon single crystal and method for manufacturing silicon wafer 有权
    生长硅单晶的方法及其制造方法

    公开(公告)号:US20060283379A1

    公开(公告)日:2006-12-21

    申请号:US11356414

    申请日:2006-02-17

    IPC分类号: C30B21/04 C30B13/00 C30B28/08

    CPC分类号: C30B29/06 C30B15/04 C30B15/14

    摘要: In a method for growing a silicon single crystal, a silicon single crystal is grown by the Czochralski method to have an oxygen concentration of 12×1017 to 18×1017 atoms/cm3 on ASTM-F121 1979. A mixed gas of an inert gas and a gaseous substance containing hydrogen atoms is used as an atmospheric gas for growing the single crystal. A temperature of the silicon single crystal is controlled during the growth of the crystal such that the ratio Gc/Ge of an axial thermal gradient Gc at the central portion of the crystal between its melting point and its temperature of 1350° C. to an axial thermal gradient Ge at the periphery of the crystal between its melting point and its temperature of 1350° C. is 1.1 to 1.4. The axial thermal gradient Gc at the central portion of the crystal is 3.0 to 3.5° C./mm.

    摘要翻译: 在用于生长硅单晶的方法中,硅单晶通过切克劳斯(Czochralski)法生长,以使氧浓度为12×10 17至18×10 17原子/ cm 2 > 3 。使用惰性气体和含有氢原子的气态物质的混合气体作为用于生长单晶的气氛气体。 在晶体生长期间控制硅单晶的温度,使得晶体中心部分处的熔点和其温度为1350℃之间的轴向热梯度Gc的比率Gc / Ge与轴向 在其熔点和其温度为1350℃之间的晶体周边的热梯度Ge为1.1至1.4。 晶体中心部分的轴向热梯度Gc为3.0〜3.5℃/ mm。

    Manufacturing method of high resistivity silicon single crystal
    5.
    发明申请
    Manufacturing method of high resistivity silicon single crystal 有权
    高电阻率硅单晶的制造方法

    公开(公告)号:US20050000410A1

    公开(公告)日:2005-01-06

    申请号:US10828555

    申请日:2004-04-21

    CPC分类号: C30B29/06 C30B15/00

    摘要: To suppress a fluctuation in resistivity around a target value to thereby stably manufacture high resistivity silicon single crystals having almost the same resistivity values in a manufacturing method wherein a silicon raw material is molten to manufacture a high resistivity silicon single crystal in the range of from 100 to 2000 Ω cm with a CZ method. In a case where poly-silicon produced with a Siemens method using trichlorosilane as raw material is used as the silicon raw material, an impurity concentration in the silicon raw material is selected so as to be controlled in the range of from −5 to 50 ppta method in terms of (a donor concentration—an acceptor concentration) and the selected poly-silicon is used. In a case of a MCZ method, the poly-silicon is selected in the range of from −25 to 20 ppta and the selected poly-silicon is used. Instead of the raw material, poly-silicon produced with a Siemens method using monosilane as raw material is used. Alternatively, a silicon crystal manufactured with a CZ method or a MCZ method using poly-silicon raw material is used.

    摘要翻译: 为了抑制围绕目标值的电阻率的波动,从而在将硅原料熔融以制造范围为100的高电阻率硅单晶的制造方法中稳定地制造具有几乎相同的电阻率值的高电阻率硅单晶 到2000欧米加厘米与CZ方法。 在使用以三氯硅烷为原料的西门子方法制造的多晶硅作为硅原料的情况下,选择硅原料中的杂质浓度以控制在-5〜50ppta的范围内 使用(供体浓度 - 受体浓度)和选择的多晶硅的方法。 在MCZ方法的情况下,多晶硅的选择范围为-25〜20ppta,使用所选择的多晶硅。 使用以硅烷为原料的西门子法生产的多晶硅代替原料。 或者,使用以CZ法制造的硅晶体或使用多晶硅原料的MCZ法。

    Method for growing silicon single crystal and method for manufacturing silicon wafer
    6.
    发明授权
    Method for growing silicon single crystal and method for manufacturing silicon wafer 有权
    生长硅单晶的方法及其制造方法

    公开(公告)号:US07819972B2

    公开(公告)日:2010-10-26

    申请号:US11356414

    申请日:2006-02-17

    IPC分类号: C30B15/20

    CPC分类号: C30B29/06 C30B15/04 C30B15/14

    摘要: In a method for growing a silicon single crystal, a silicon single crystal is grown by the Czochralski method to have an oxygen concentration of 12×1017 to 18×1017 atoms/cm3 on ASTM-F121 1979. A mixed gas of an inert gas and a gaseous substance containing hydrogen atoms is used as an atmospheric gas for growing the single crystal. A temperature of the silicon single crystal is controlled during the growth of the crystal such that the ratio Gc/Ge of an axial thermal gradient Gc at the central portion of the crystal between its melting point and its temperature of 1350° C. to an axial thermal gradient Ge at the periphery of the crystal between its melting point and its temperature of 1350° C. is 1.1 to 1.4. The axial thermal gradient Gc at the central portion of the crystal is 3.0 to 3.5° C./mm.

    摘要翻译: 在生长硅单晶的方法中,通过Czochralski法生长硅单晶,在ASTM-F121 1979上具有12×1017至18×1017原子/ cm3的氧浓度。惰性气体和 使用含有氢原子的气态物质作为用于生长单晶的气氛气体。 在晶体生长期间控制硅单晶的温度,使得晶体中心部分处的熔点和其温度为1350℃之间的轴向热梯度Gc的比率Gc / Ge与轴向 在其熔点和其温度为1350℃之间的晶体周边的热梯度Ge为1.1至1.4。 晶体中心部分的轴向热梯度Gc为3.0〜3.5℃/ mm。

    SEED CRYSTAL FOR PULLING SILICON SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SILICON SINGLE CRYSTAL BY USING THE SEED CRYSTAL
    7.
    发明申请
    SEED CRYSTAL FOR PULLING SILICON SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SILICON SINGLE CRYSTAL BY USING THE SEED CRYSTAL 审中-公开
    用于拉丝硅单晶的SEED晶体和使用晶种制造硅单晶的方法

    公开(公告)号:US20100242832A1

    公开(公告)日:2010-09-30

    申请号:US12676634

    申请日:2008-07-17

    申请人: Nobumitsu Takase

    发明人: Nobumitsu Takase

    IPC分类号: C30B15/36 C09K3/00

    CPC分类号: C30B29/06 C30B15/36

    摘要: Provided is a seed crystal for pulling a silicon single crystal that can reduce generation of slip dislocation due to thermal shock that occurs at the time of contact with a silicon melt, suppress propagation of this slip dislocation, and eliminate dislocation even though a diameter of a neck portion is larger than that in conventional examples. The seed crystal for pulling a silicon single crystal according to the present invention is an improvement in a seed crystal used for pulling a silicon single crystal based on a CZ method, and its characteristics configuration lies in that the seed crystal is cut out from a silicon single crystal pulled from a carbon-doped silicon melt and a concentration of carbon with which the seed crystal is doped is in the range of 5×1015 to 5×1017 atoms/cm3.

    摘要翻译: 提供一种用于拉出硅单晶的晶种,其可以减少由于在与硅熔体接触时发生的热冲击而产生滑移位错,抑制该滑移位错的传播,并且消除位错,即使直径为 颈部大于常规实施例。 根据本发明的用于拉制硅单晶的晶种是用于基于CZ方法拉制硅单晶的晶种的改进,其特征构造在于从硅切出晶种 从碳掺杂的硅熔体中拉出的单晶和掺杂有晶种的碳的浓度在5×10 15至5×10 17原子/ cm 3的范围内。

    Device and method for measuring position of liquid surface or melt in single-crystal-growing apparatus
    8.
    发明授权
    Device and method for measuring position of liquid surface or melt in single-crystal-growing apparatus 有权
    用于测量单晶生长装置中液面或熔体位置的装置和方法

    公开(公告)号:US07172656B2

    公开(公告)日:2007-02-06

    申请号:US10822662

    申请日:2004-04-13

    IPC分类号: C30B15/26

    摘要: In a device and a method for measuring the position of the liquid surface of a melt while a single crystal is being pulled, two measuring-lines are defined in an image of a fusion ring which is captured by means of a two-dimensional CCD camera, the intersections of the respective measuring lines and the fusion ring, on the opposite sides of the fusion ring, are detected, and the central position of the single crystal is calculated based on the intervals between the intersections on the opposite sides of the fusion ring, whereby the position of the liquid surface of the melt is determined.

    摘要翻译: 在拉伸单晶时测量熔体液面的位置的装置和方法中,在通过二维CCD照相机捕获的熔融环的图像中限定了两条测量线 检测熔融环的相对侧上的各测量线和熔接环的交点,并且基于熔融环的相对侧上的交点之间的间隔计算单晶的中心位置 由此确定熔体的液面的位置。

    High resistivity silicon wafer and method for fabricating the same
    9.
    发明申请
    High resistivity silicon wafer and method for fabricating the same 有权
    高电阻率硅晶片及其制造方法

    公开(公告)号:US20050127477A1

    公开(公告)日:2005-06-16

    申请号:US10964728

    申请日:2004-10-15

    CPC分类号: H01L21/3225

    摘要: A high resistivity p type silicon wafer with a resistivity of 100 Ωcm or more, in the vicinity of the surface being formed denuded zone, wherein when a heat treatment in the device fabrication process is performed, a p/n type conversion layer due to thermal donor generation is located at a depth to be brought into contact with neither any device active region nor depletion layer region formed in contact therewith or at a depth more than 8 μm from the surface, and a method for fabricating the same. The high resistivity silicon wafer can cause the influence of thermal donors to disappear without reducing the soluble oxygen concentration in the wafer, whereby even if various heat treatments are performed in the device fabrication process, devices such as CMOS that offer superior characteristics can be fabricated. The wafer has wide application as a substrate for a high-frequency integrated circuit device.

    摘要翻译: 在形成表面的附近,具有电阻率为100Ωm或更大的高电阻率p型硅晶片,其中当进行器件制造工艺中的热处理时,由于热供体而导致的ap / n型转换层 一代位于与表面形成接触或超过8μm深度的任何器件有源区和耗尽层区域的深度上,以及其制造方法。 高电阻率硅晶片可以引起供体的影响而不降低晶片中的可溶性氧浓度,由此即使在器件制造工艺中进行各种热处理,也可以制造诸如CMOS的器件,其提供优异的特性。 该晶片作为高频集成电路器件的基板具有广泛的应用。

    Method of manufacturing silicon single crystal, apparatus for pulling silicon single crystal and vitreous silica crucible
    10.
    发明授权
    Method of manufacturing silicon single crystal, apparatus for pulling silicon single crystal and vitreous silica crucible 有权
    硅单晶的制造方法,硅单晶拉丝装置和玻璃状石英坩埚

    公开(公告)号:US08696813B2

    公开(公告)日:2014-04-15

    申请号:US12786911

    申请日:2010-05-25

    IPC分类号: C30B15/04

    CPC分类号: C30B15/20 C30B15/10 C30B29/06

    摘要: Leakage of silicon melt is monitored and touch of a seed crystal at the silicon melt is detected, and in addition, reinforcement of a vitreous silica crucible to be endurable during pulling for a long time and decrease of impurity concentration of a silicon single crystal can be expected. A method for manufacturing a silicon single crystal is provided. The method includes: detecting touching status of a seed crystal at silicon melt by supplying voltage V1 using a crucible side as a negative electrode and a wire side as a positive electrode and by monitoring change of the voltage, when the seed crystal provided at a front end of the wire touches the silicon melt inside a vitreous silica crucible; devitrifying an inner surface of the vitreous silica crucible as supplying voltage V2 using the crucible side as a positive electrode and the wire side as a negative electrode during a temperature control period; and growing a silicon single crystal by slowly pulling the seed crystal as supplying voltage V3 using the crucible side as a negative electrode and the wire side as a positive electrode after the temperature control period.

    摘要翻译: 监测硅熔体的泄漏,并检测硅熔体中的晶种的接触,此外,长时间拉伸和降低硅单晶的杂质浓度可以耐久的石英玻璃坩埚的增强可以是 预期。 提供了制造硅单晶的方法。 该方法包括:通过使用坩埚侧作为负极并且线侧作为正极​​来提供电压V1,并通过监视电压的变化来检测硅熔体处的晶种的触摸状态 导线的末端触及石英玻璃坩埚内的硅熔体; 在温度控制期间,使用坩埚侧作为正极​​而将作为负极的线侧作为供给电压V2而使玻璃状石英坩埚的内表面失透; 并且通过在坩埚侧作为负极并且在温度控制周期之后将线侧作为正极​​,通过缓慢地拉晶晶体作为供给电压V3来生长硅单晶。