High resistivity silicon wafers
    1.
    发明授权
    High resistivity silicon wafers 有权
    高电阻率硅片

    公开(公告)号:US08252404B2

    公开(公告)日:2012-08-28

    申请号:US10985880

    申请日:2004-11-12

    IPC分类号: C30B29/00

    摘要: Disclosed are high resistivity silicon wafers, wherein the interstitial oxygen concentration thereof is 8×1017 atoms/cm3 (ASTM F121-1979) or less, BMD (Bulk Micro Defect) density—oxygen precipitate within wafer—is 5×107 pieces/cm3 or less, and an electric resistivity thereof is 100 Ω·cm or more. And further disclosed are high resistivity silicon wafers having an electric resistivity of 100 Ω·cm or more, which are cut from crystal region where no COP (Crystal Originated Particle) exist, and in which neither COP (Crystal Originated Particle) nor oxygen precipitate exist at the area from wafer surface to the depth of 5 μm or more owing to high temperature treatment. It is preferable that, in said high resistivity wafers, carbon concentration in wafers is 1×1016 atoms/cm3 or more (ASTM F123-1981), and/or nitrogen concentration is 1×1013 atoms/cm3 or more. Accordingly, high resistivity silicon wafers are provided, wherein the mechanical strength thereof is highly secured, and an excellent characteristic to slip generation is provided, so as to be optimal for base wafers of silicon wafers having a SOI structure or an epitaxial structure.

    摘要翻译: 公开了高电阻率硅片,其间隙氧浓度为8×1017原子/ cm3(ASTM F121-1979)或更低,晶片内的BMD(体积微缺陷)密度 - 氧沉淀物为5×107个/ cm3或 较小,电阻率为100Ω·cm·cm以上。 并且还公开了电阻率为100Ω·cm·cm以上的高电阻率硅晶片,其从不存在COP(晶体起始粒子)的晶体区域切割,并且其中没有COP(晶体起始粒子)和氧沉淀 由于高温处理,存在于从晶片表面到5μm以上的深度的区域。 优选在所述高电阻率晶片中,晶片中的碳浓度为1×1016原子/ cm3以上(ASTM F123-1981),和/或氮浓度为1×1013原子/ cm3以上。 因此,提供了高电阻率硅晶片,其机械强度高度确保,并且提供了优异的滑动产生特性,从而对于具有SOI结构或外延结构的硅晶片的基底晶片是最佳的。

    SILICON EPITAXIAL WAFER AND PRODUCTION METHOD FOR SAME
    2.
    发明申请
    SILICON EPITAXIAL WAFER AND PRODUCTION METHOD FOR SAME 审中-公开
    硅外延晶片及其生产方法

    公开(公告)号:US20110171814A1

    公开(公告)日:2011-07-14

    申请号:US13051909

    申请日:2011-03-18

    IPC分类号: H01L21/322

    摘要: A method for preparing a silicon epitaxial wafer that includes a silicon single crystal wafer sliced from a CZ silicon ingot doped with carbon in a concentration range of not less than 5×1015 atoms/cm3 and not more than 5×1017 atoms/cm3 and an epitaxial layer consisting of a silicon single crystal epitaxially grown on a front surface of the silicon single crystal wafer. A polycrystalline silicon layer having a thickness of not less than 0.5 μm and not more than 1.5 μm is formed on a back surface of the silicon single crystal wafer.

    摘要翻译: 一种制备硅外延晶片的方法,其包括从掺杂有不少于5×10 15原子/ cm 3且不大于5×10 17原子/ cm 3的浓度的碳的CZ硅锭切片的硅单晶晶片和 外延层由在硅单晶晶片的前表面外延生长的单晶硅构成。 在硅单晶晶片的背面形成厚度不小于0.5μm且不大于1.5μm的多晶硅层。

    Method for manufacturing silicon wafer method
    3.
    发明授权
    Method for manufacturing silicon wafer method 有权
    硅晶片制造方法

    公开(公告)号:US07700394B2

    公开(公告)日:2010-04-20

    申请号:US11631451

    申请日:2005-06-21

    IPC分类号: G01R31/26 H01L31/00

    摘要: There is obtained a silicon wafer which has a large diameter, where no slip generated therein in a wide range of a density of oxygen precipitates even though a heat treatment such as SLA or FLA is applied thereto, and which has high strength.First, by inputting as input parameters combinations of a plurality of types of oxygen concentrations and thermal histories set for manufacture of a silicon wafer, a Fokker-Planck equation is solved to calculate each of a diagonal length L and a density D of oxygen precipitates in the wafer after a heat treatment step to form the oxygen precipitates (11) and immediately before a heat treatment step of a device manufacturing process is calculated. Then, a maximum heat stress S acting in a tangent line direction of an outer peripheral portion of the wafer in the heat treatment step of the device manufacturing process is calculated based on a heat treatment furnace structure and a heat treatment temperature used in the heat treatment step of the device manufacturing process, and then an oxygen concentration or the like satisfying the following Expression (1) is determined: 12000×D−0.26≦L≦51000×S−1.55  (1).

    摘要翻译: 获得了具有大直径的硅晶片,即使在其中施加了诸如SLA或FLA的热处理并且具有高强度的情况下,在宽的氧浓度范围内产生的滑移也会沉淀。 首先,通过输入用于制造硅晶片的多种类型的氧浓度和热历史的输入参数的组合,解决了福克 - 普朗克方程,以计算每个对角线长度L和氧沉淀物的密度D 在热处理步骤之后形成氧沉淀物(11)的晶片,并且在计算装置制造过程的热处理步骤之前。 然后,基于热处理炉结构和热处理中使用的热处理温度,计算在器件制造工序的热处理工序中在晶片的外周部的切线方向上的最大热应力S 确定满足以下表达式(1)的装置制造过程的步骤,然后确定氧浓度等:12000×D-0.26≦̸ L≦̸ 51000×S-1.55(1)。

    Manufacturing method of high resistivity silicon single crystal
    4.
    发明申请
    Manufacturing method of high resistivity silicon single crystal 有权
    高电阻率硅单晶的制造方法

    公开(公告)号:US20050000410A1

    公开(公告)日:2005-01-06

    申请号:US10828555

    申请日:2004-04-21

    CPC分类号: C30B29/06 C30B15/00

    摘要: To suppress a fluctuation in resistivity around a target value to thereby stably manufacture high resistivity silicon single crystals having almost the same resistivity values in a manufacturing method wherein a silicon raw material is molten to manufacture a high resistivity silicon single crystal in the range of from 100 to 2000 Ω cm with a CZ method. In a case where poly-silicon produced with a Siemens method using trichlorosilane as raw material is used as the silicon raw material, an impurity concentration in the silicon raw material is selected so as to be controlled in the range of from −5 to 50 ppta method in terms of (a donor concentration—an acceptor concentration) and the selected poly-silicon is used. In a case of a MCZ method, the poly-silicon is selected in the range of from −25 to 20 ppta and the selected poly-silicon is used. Instead of the raw material, poly-silicon produced with a Siemens method using monosilane as raw material is used. Alternatively, a silicon crystal manufactured with a CZ method or a MCZ method using poly-silicon raw material is used.

    摘要翻译: 为了抑制围绕目标值的电阻率的波动,从而在将硅原料熔融以制造范围为100的高电阻率硅单晶的制造方法中稳定地制造具有几乎相同的电阻率值的高电阻率硅单晶 到2000欧米加厘米与CZ方法。 在使用以三氯硅烷为原料的西门子方法制造的多晶硅作为硅原料的情况下,选择硅原料中的杂质浓度以控制在-5〜50ppta的范围内 使用(供体浓度 - 受体浓度)和选择的多晶硅的方法。 在MCZ方法的情况下,多晶硅的选择范围为-25〜20ppta,使用所选择的多晶硅。 使用以硅烷为原料的西门子法生产的多晶硅代替原料。 或者,使用以CZ法制造的硅晶体或使用多晶硅原料的MCZ法。

    High resistance silicon wafer and its manufacturing method
    5.
    发明授权
    High resistance silicon wafer and its manufacturing method 有权
    高电阻硅晶片及其制造方法

    公开(公告)号:US07397110B2

    公开(公告)日:2008-07-08

    申请号:US10512405

    申请日:2003-04-16

    IPC分类号: H01L29/36 H01L21/322

    CPC分类号: H01L21/3225

    摘要: A high-resistance silicon wafer is manufactured in which a gettering ability, mechanical strength, and economical efficiency are excellent and an oxygen thermal donor is effectively prevented from being generated in a heat treatment for forming a circuit, which is implemented on the side of a device maker. A heat treatment for forming an oxygen precipitate nucleus is performed at 500 to 900° C. for 5 hours or more in a non-oxidizing atmosphere and a heat treatment for growing an oxygen precipitate is performed at 950 to 1050° C. for 10 hours or more on a high-oxygen and carbon-doped high-resistance silicon wafer in which resistivity is 100 Ωcm or more, an oxygen concentration is 14×1017 atoms/cm3 (ASTM F-121, 1979) or more and a carbon concentration is 0.5×1016 atoms/cm3 or more. By these heat treatments, a remaining oxygen concentration in the wafer is controlled to be 12×1017 atoms/cm3 (ASTM F-121, 1979) or less. Thus, there is provided a high-resistance, low-oxygen and high-strength silicon wafer in which resistivity is 100 Ωcm or more and an oxygen precipitate (BMD) having a size of 0.2 μm is formed so as to have high density of 1×104/cm2 or more.

    摘要翻译: 制造高电阻硅晶片,其中吸收能力,机械强度和经济效率优异,并且在用于形成电路的热处理中有效地防止了氧热供体的产生,该电路在 设备制造商。 在非氧化性气氛中,在500〜900℃下进行形成氧沉淀核的热处理5小时以上,在950〜1050℃下进行氧沉淀的热处理10小时 以上,电阻率为100Ωm以上的高氧和碳掺杂高电阻硅晶片,氧浓度为14×10 17原子/ cm 3(以下) ASTM F-121,1979)或更高,碳浓度为0.5×10 16原子/ cm 3以上。 通过这些热处理,将晶片中的剩余氧浓度控制为12×10 17原子/ cm 3(ASTM F-121,1979)或更小。 因此,提供了电阻率为100Ωm或更大的高电阻,低氧和高强度硅晶片,并且形成具有0.2μm大小的氧沉淀物(BMD),以便具有高密度的1×10 4/4以上。

    High resistivity silicon wafer and method for fabricating the same
    6.
    发明授权
    High resistivity silicon wafer and method for fabricating the same 有权
    高电阻率硅晶片及其制造方法

    公开(公告)号:US07226571B2

    公开(公告)日:2007-06-05

    申请号:US10964728

    申请日:2004-10-15

    IPC分类号: C30B15/20

    CPC分类号: H01L21/3225

    摘要: A high resistivity p type silicon wafer with a resistivity of 100 Ωcm or more, in the vicinity of the surface being formed denuded zone, wherein when a heat treatment in the device fabrication process is performed, a p/n type conversion layer due to thermal donor generation is located at a depth to be brought into contact with neither any device active region nor depletion layer region formed in contact therewith or at a depth more than 8 μm from the surface, and a method for fabricating the same. The high resistivity silicon wafer can cause the influence of thermal donors to disappear without reducing the soluble oxygen concentration in the wafer, whereby even if various heat treatments are performed in the device fabrication process, devices such as CMOS that offer superior characteristics can be fabricated. The wafer has wide application as a substrate for a high-frequency integrated circuit device.

    摘要翻译: 在形成表面的附近,具有电阻率为100Ωm或更大的高电阻率p型硅晶片,其中当进行器件制造工艺中的热处理时,由于热供体而导致的ap / n型转换层 一代位于与表面形成接触或超过8μm深度的任何器件有源区和耗尽层区域的深度上,以及其制造方法。 高电阻率硅晶片可以引起供体的影响而不降低晶片中的可溶性氧浓度,由此即使在器件制造工艺中进行各种热处理,也可以制造诸如CMOS的器件,其提供优异的特性。 该晶片作为高频集成电路器件的基板具有广泛的应用。

    High-resistance silicon wafer and process for producing the same
    7.
    发明申请
    High-resistance silicon wafer and process for producing the same 有权
    高电阻硅晶片及其制造方法

    公开(公告)号:US20050250349A1

    公开(公告)日:2005-11-10

    申请号:US10519837

    申请日:2003-06-30

    摘要: A high-resistance silicon wafer is manufactured, in which a gettering ability and economical efficiency is excellent and an oxygen thermal donor is effectively prevented from being generated in a heat treatment for forming a circuit, which is to be implemented on the side of a device manufacturer. In order to implement the above, a high-temperature heat treatment at 1100° C. or higher is performed on a carbon doped high-resistance and high-oxygen silicon wafer in which specific resistivity is 100 Ωcm or more and a carbon concentration is 5×1015 to 5×1017 atoms/cm3 so that a remaining oxygen concentration becomes 6.5×1017 atoms/cm3 or more (Old-ASTM). As this high-temperature treatment, an OD treatment for forming a DZ layer on a wafer surface, a high-temperature annealing treatment for eliminating a COP on the surface layer, a high-temperature heat treatment for forming a BOX layer in a SIMOX wafer manufacturing process and the like can be used.

    摘要翻译: 制造高电阻硅晶片,其中吸收能力和经济效率优异,并且在用于形成电路的热处理中有效地防止氧热供体被产生,该电路将在器件的一侧 制造商。 为了实现上述,在比电阻率为100Ω·以上且碳浓度为5×10 6的碳掺杂高电阻和高氧硅晶片上进行1100℃以上的高温热处理 15至15×10 17原子/ cm 3,使得剩余的氧浓度为6.5×10 17原子/ cm 3, SUP> 3以上(旧ASTM)。 作为这种高温处理,在晶片表面上形成DZ层的OD处理,用于消除表面层上的COP的高温退火处理,在SIMOX晶片中形成BOX层的高温热处理 可以使用制造工艺等。

    Method for Manufacturing Silicon Wafer and Silicon Wafer Manufactured by this Method
    8.
    发明申请
    Method for Manufacturing Silicon Wafer and Silicon Wafer Manufactured by this Method 有权
    通过该方法制造硅晶片和硅晶片的方法

    公开(公告)号:US20080118424A1

    公开(公告)日:2008-05-22

    申请号:US11631451

    申请日:2005-06-21

    IPC分类号: H01L21/66 C01B33/00

    摘要: There is obtained a silicon wafer which has a large diameter, where no slip generated therein in a wide range of a density of oxygen precipitates even though a heat treatment such as SLA or FLA is applied thereto, and which has high strength.First, by inputting as input parameters combinations of a plurality of types of oxygen concentrations and thermal histories set for manufacture of a silicon wafer a Fokker-Planck equation is solved to calculate each of a diagonal length L and a density D of oxygen precipitates in the wafer after a heat treatment step to form the oxygen precipitates (11) and immediately before a heat treatment step of a device manufacturing process is calculated. Then, a maximum heat stress S acting in a tangent line direction of an outer peripheral portion of the wafer in the heat treatment step of the device manufacturing process is calculated based on a heat treatment furnace structure and a heat treatment temperature used in the heat treatment step of the device manufacturing process, and then an oxygen concentration or the like satisfying the following Expression (1) is determined: 12000×D−0.26≦L≦51000×S−1.55   (1)

    摘要翻译: 获得了具有大直径的硅晶片,即使在其中施加了诸如SLA或FLA的热处理并且具有高强度的情况下,在宽的氧浓度范围内产生的滑移也会沉淀。 首先,通过输入多个类型的氧浓度的组合和用于制造硅晶片的热历史的组合的输入参数,解决了福克 - 普朗克方程式,以计算出所述氧沉淀物的对角线长度L和密度D 在热处理步骤之后形成氧沉淀物(11)并且在计算装置制造过程的热处理步骤之前。 然后,基于热处理炉结构和热处理中使用的热处理温度,计算在器件制造工序的热处理工序中在晶片的外周部的切线方向上的最大热应力S 确定装置制造过程的步骤,然后确定满足以下表达式(1)的氧浓度等:<?in-line-formula description =“In-line formula”end =“lead”?> 12000xD -0.26 <= L <= 51000×S -1.55 (1)<?in-line-formula description =“In-line Formulas”end =“tail”?>

    High-resistance silicon wafer and process for producing the same
    9.
    发明授权
    High-resistance silicon wafer and process for producing the same 有权
    高电阻硅晶片及其制造方法

    公开(公告)号:US07316745B2

    公开(公告)日:2008-01-08

    申请号:US10519837

    申请日:2003-06-30

    摘要: A high-resistance silicon wafer is manufactured, in which a gettering ability and economical efficiency is excellent and an oxygen thermal donor is effectively prevented from being generated in a heat treatment for forming a circuit, which is to be implemented on the side of a device manufacturer. In order to implement the above, a high-temperature heat treatment at 1100° C. or higher is performed on a carbon doped high-resistance and high-oxygen silicon wafer in which specific resistivity is 100 Ωcm or more and a carbon concentration is 5×1015 to 5×1017 atoms/cm3 so that a remaining oxygen concentration becomes 6.5×1017 atoms/cm3 or more (Old-ASTM). As this high-temperature treatment, an OD treatment for forming a DZ layer on a wafer surface, a high-temperature annealing treatment for eliminating a COP on the surface layer, a high-temperature heat treatment for forming a BOX layer in a SIMOX wafer manufacturing process and the like can be used.

    摘要翻译: 制造高电阻硅晶片,其中吸收能力和经济效率优异,并且在用于形成电路的热处理中有效地防止氧热供体被产生,该电路将在器件的一侧 制造商。 为了实现上述,在比电阻率为100Ω·以上且碳浓度为5×10 6的碳掺杂高电阻和高氧硅晶片上进行1100℃以上的高温热处理 15至15×10 17原子/ cm 3,使得剩余的氧浓度为6.5×10 17原子/ cm 3, SUP> 3以上(旧ASTM)。 作为这种高温处理,在晶片表面上形成DZ层的OD处理,用于消除表面层上的COP的高温退火处理,在SIMOX晶片中形成BOX层的高温热处理 可以使用制造工艺等。

    Manufacturing method of high resistivity silicon single crystal
    10.
    发明授权
    Manufacturing method of high resistivity silicon single crystal 有权
    高电阻率硅单晶的制造方法

    公开(公告)号:US07220308B2

    公开(公告)日:2007-05-22

    申请号:US10828555

    申请日:2004-04-21

    IPC分类号: C30B15/20

    CPC分类号: C30B29/06 C30B15/00

    摘要: To suppress a fluctuation in resistivity around a target value to thereby stably manufacture high resistivity silicon single crystals having almost the same resistivity values in a manufacturing method wherein a silicon raw material is molten to manufacture a high resistivity silicon single crystal in the range of from 100 to 2000 Ω cm with a CZ method. In a case where poly-silicon produced with a Siemens method using trichlorosilane as raw material is used as the silicon raw material, an impurity concentration in the silicon raw material is selected so as to be controlled in the range of from −5 to 50 ppta method in terms of (a donor concentration—an acceptor concentration) and the selected poly-silicon is used. In a case of a MCZ method, the poly-silicon is selected in the range of from −25 to 20 ppta and the selected poly-silicon is used. Instead of the raw material, poly-silicon produced with a Siemens method using monosilane as raw material is used. Alternatively, a silicon crystal manufactured with a CZ method or a MCZ method using poly-silicon raw material is used.

    摘要翻译: 为了抑制围绕目标值的电阻率的波动,从而在将硅原料熔融以制造范围为100的高电阻率硅单晶的制造方法中稳定地制造具有几乎相同的电阻率值的高电阻率硅单晶 到2000欧米加厘米与CZ方法。 在使用以三氯硅烷为原料的西门子方法制造的多晶硅作为硅原料的情况下,选择硅原料中的杂质浓度以控制在-5〜50ppta的范围内 使用(供体浓度 - 受体浓度)和选择的多晶硅的方法。 在MCZ方法的情况下,多晶硅的选择范围为-25〜20ppta,使用所选择的多晶硅。 使用以硅烷为原料的西门子法生产的多晶硅代替原料。 或者,使用以CZ法制造的硅晶体或使用多晶硅原料的MCZ法。