摘要:
Disclosed are high resistivity silicon wafers, wherein the interstitial oxygen concentration thereof is 8×1017 atoms/cm3 (ASTM F121-1979) or less, BMD (Bulk Micro Defect) density—oxygen precipitate within wafer—is 5×107 pieces/cm3 or less, and an electric resistivity thereof is 100 Ω·cm or more. And further disclosed are high resistivity silicon wafers having an electric resistivity of 100 Ω·cm or more, which are cut from crystal region where no COP (Crystal Originated Particle) exist, and in which neither COP (Crystal Originated Particle) nor oxygen precipitate exist at the area from wafer surface to the depth of 5 μm or more owing to high temperature treatment. It is preferable that, in said high resistivity wafers, carbon concentration in wafers is 1×1016 atoms/cm3 or more (ASTM F123-1981), and/or nitrogen concentration is 1×1013 atoms/cm3 or more. Accordingly, high resistivity silicon wafers are provided, wherein the mechanical strength thereof is highly secured, and an excellent characteristic to slip generation is provided, so as to be optimal for base wafers of silicon wafers having a SOI structure or an epitaxial structure.
摘要:
A method for preparing a silicon epitaxial wafer that includes a silicon single crystal wafer sliced from a CZ silicon ingot doped with carbon in a concentration range of not less than 5×1015 atoms/cm3 and not more than 5×1017 atoms/cm3 and an epitaxial layer consisting of a silicon single crystal epitaxially grown on a front surface of the silicon single crystal wafer. A polycrystalline silicon layer having a thickness of not less than 0.5 μm and not more than 1.5 μm is formed on a back surface of the silicon single crystal wafer.
摘要翻译:一种制备硅外延晶片的方法,其包括从掺杂有不少于5×10 15原子/ cm 3且不大于5×10 17原子/ cm 3的浓度的碳的CZ硅锭切片的硅单晶晶片和 外延层由在硅单晶晶片的前表面外延生长的单晶硅构成。 在硅单晶晶片的背面形成厚度不小于0.5μm且不大于1.5μm的多晶硅层。
摘要:
There is obtained a silicon wafer which has a large diameter, where no slip generated therein in a wide range of a density of oxygen precipitates even though a heat treatment such as SLA or FLA is applied thereto, and which has high strength.First, by inputting as input parameters combinations of a plurality of types of oxygen concentrations and thermal histories set for manufacture of a silicon wafer, a Fokker-Planck equation is solved to calculate each of a diagonal length L and a density D of oxygen precipitates in the wafer after a heat treatment step to form the oxygen precipitates (11) and immediately before a heat treatment step of a device manufacturing process is calculated. Then, a maximum heat stress S acting in a tangent line direction of an outer peripheral portion of the wafer in the heat treatment step of the device manufacturing process is calculated based on a heat treatment furnace structure and a heat treatment temperature used in the heat treatment step of the device manufacturing process, and then an oxygen concentration or the like satisfying the following Expression (1) is determined: 12000×D−0.26≦L≦51000×S−1.55 (1).
摘要:
To suppress a fluctuation in resistivity around a target value to thereby stably manufacture high resistivity silicon single crystals having almost the same resistivity values in a manufacturing method wherein a silicon raw material is molten to manufacture a high resistivity silicon single crystal in the range of from 100 to 2000 Ω cm with a CZ method. In a case where poly-silicon produced with a Siemens method using trichlorosilane as raw material is used as the silicon raw material, an impurity concentration in the silicon raw material is selected so as to be controlled in the range of from −5 to 50 ppta method in terms of (a donor concentration—an acceptor concentration) and the selected poly-silicon is used. In a case of a MCZ method, the poly-silicon is selected in the range of from −25 to 20 ppta and the selected poly-silicon is used. Instead of the raw material, poly-silicon produced with a Siemens method using monosilane as raw material is used. Alternatively, a silicon crystal manufactured with a CZ method or a MCZ method using poly-silicon raw material is used.
摘要:
A high-resistance silicon wafer is manufactured in which a gettering ability, mechanical strength, and economical efficiency are excellent and an oxygen thermal donor is effectively prevented from being generated in a heat treatment for forming a circuit, which is implemented on the side of a device maker. A heat treatment for forming an oxygen precipitate nucleus is performed at 500 to 900° C. for 5 hours or more in a non-oxidizing atmosphere and a heat treatment for growing an oxygen precipitate is performed at 950 to 1050° C. for 10 hours or more on a high-oxygen and carbon-doped high-resistance silicon wafer in which resistivity is 100 Ωcm or more, an oxygen concentration is 14×1017 atoms/cm3 (ASTM F-121, 1979) or more and a carbon concentration is 0.5×1016 atoms/cm3 or more. By these heat treatments, a remaining oxygen concentration in the wafer is controlled to be 12×1017 atoms/cm3 (ASTM F-121, 1979) or less. Thus, there is provided a high-resistance, low-oxygen and high-strength silicon wafer in which resistivity is 100 Ωcm or more and an oxygen precipitate (BMD) having a size of 0.2 μm is formed so as to have high density of 1×104/cm2 or more.
摘要翻译:制造高电阻硅晶片,其中吸收能力,机械强度和经济效率优异,并且在用于形成电路的热处理中有效地防止了氧热供体的产生,该电路在 设备制造商。 在非氧化性气氛中,在500〜900℃下进行形成氧沉淀核的热处理5小时以上,在950〜1050℃下进行氧沉淀的热处理10小时 以上,电阻率为100Ωm以上的高氧和碳掺杂高电阻硅晶片,氧浓度为14×10 17原子/ cm 3(以下) ASTM F-121,1979)或更高,碳浓度为0.5×10 16原子/ cm 3以上。 通过这些热处理,将晶片中的剩余氧浓度控制为12×10 17原子/ cm 3(ASTM F-121,1979)或更小。 因此,提供了电阻率为100Ωm或更大的高电阻,低氧和高强度硅晶片,并且形成具有0.2μm大小的氧沉淀物(BMD),以便具有高密度的1×10 4/4以上。
摘要:
A high resistivity p type silicon wafer with a resistivity of 100 Ωcm or more, in the vicinity of the surface being formed denuded zone, wherein when a heat treatment in the device fabrication process is performed, a p/n type conversion layer due to thermal donor generation is located at a depth to be brought into contact with neither any device active region nor depletion layer region formed in contact therewith or at a depth more than 8 μm from the surface, and a method for fabricating the same. The high resistivity silicon wafer can cause the influence of thermal donors to disappear without reducing the soluble oxygen concentration in the wafer, whereby even if various heat treatments are performed in the device fabrication process, devices such as CMOS that offer superior characteristics can be fabricated. The wafer has wide application as a substrate for a high-frequency integrated circuit device.
摘要:
A high-resistance silicon wafer is manufactured, in which a gettering ability and economical efficiency is excellent and an oxygen thermal donor is effectively prevented from being generated in a heat treatment for forming a circuit, which is to be implemented on the side of a device manufacturer. In order to implement the above, a high-temperature heat treatment at 1100° C. or higher is performed on a carbon doped high-resistance and high-oxygen silicon wafer in which specific resistivity is 100 Ωcm or more and a carbon concentration is 5×1015 to 5×1017 atoms/cm3 so that a remaining oxygen concentration becomes 6.5×1017 atoms/cm3 or more (Old-ASTM). As this high-temperature treatment, an OD treatment for forming a DZ layer on a wafer surface, a high-temperature annealing treatment for eliminating a COP on the surface layer, a high-temperature heat treatment for forming a BOX layer in a SIMOX wafer manufacturing process and the like can be used.
摘要翻译:制造高电阻硅晶片,其中吸收能力和经济效率优异,并且在用于形成电路的热处理中有效地防止氧热供体被产生,该电路将在器件的一侧 制造商。 为了实现上述,在比电阻率为100Ω·以上且碳浓度为5×10 6的碳掺杂高电阻和高氧硅晶片上进行1100℃以上的高温热处理 15至15×10 17原子/ cm 3,使得剩余的氧浓度为6.5×10 17原子/ cm 3, SUP> 3以上(旧ASTM)。 作为这种高温处理,在晶片表面上形成DZ层的OD处理,用于消除表面层上的COP的高温退火处理,在SIMOX晶片中形成BOX层的高温热处理 可以使用制造工艺等。
摘要:
There is obtained a silicon wafer which has a large diameter, where no slip generated therein in a wide range of a density of oxygen precipitates even though a heat treatment such as SLA or FLA is applied thereto, and which has high strength.First, by inputting as input parameters combinations of a plurality of types of oxygen concentrations and thermal histories set for manufacture of a silicon wafer a Fokker-Planck equation is solved to calculate each of a diagonal length L and a density D of oxygen precipitates in the wafer after a heat treatment step to form the oxygen precipitates (11) and immediately before a heat treatment step of a device manufacturing process is calculated. Then, a maximum heat stress S acting in a tangent line direction of an outer peripheral portion of the wafer in the heat treatment step of the device manufacturing process is calculated based on a heat treatment furnace structure and a heat treatment temperature used in the heat treatment step of the device manufacturing process, and then an oxygen concentration or the like satisfying the following Expression (1) is determined: 12000×D−0.26≦L≦51000×S−1.55 (1)
摘要:
A high-resistance silicon wafer is manufactured, in which a gettering ability and economical efficiency is excellent and an oxygen thermal donor is effectively prevented from being generated in a heat treatment for forming a circuit, which is to be implemented on the side of a device manufacturer. In order to implement the above, a high-temperature heat treatment at 1100° C. or higher is performed on a carbon doped high-resistance and high-oxygen silicon wafer in which specific resistivity is 100 Ωcm or more and a carbon concentration is 5×1015 to 5×1017 atoms/cm3 so that a remaining oxygen concentration becomes 6.5×1017 atoms/cm3 or more (Old-ASTM). As this high-temperature treatment, an OD treatment for forming a DZ layer on a wafer surface, a high-temperature annealing treatment for eliminating a COP on the surface layer, a high-temperature heat treatment for forming a BOX layer in a SIMOX wafer manufacturing process and the like can be used.
摘要翻译:制造高电阻硅晶片,其中吸收能力和经济效率优异,并且在用于形成电路的热处理中有效地防止氧热供体被产生,该电路将在器件的一侧 制造商。 为了实现上述,在比电阻率为100Ω·以上且碳浓度为5×10 6的碳掺杂高电阻和高氧硅晶片上进行1100℃以上的高温热处理 15至15×10 17原子/ cm 3,使得剩余的氧浓度为6.5×10 17原子/ cm 3, SUP> 3以上(旧ASTM)。 作为这种高温处理,在晶片表面上形成DZ层的OD处理,用于消除表面层上的COP的高温退火处理,在SIMOX晶片中形成BOX层的高温热处理 可以使用制造工艺等。
摘要:
To suppress a fluctuation in resistivity around a target value to thereby stably manufacture high resistivity silicon single crystals having almost the same resistivity values in a manufacturing method wherein a silicon raw material is molten to manufacture a high resistivity silicon single crystal in the range of from 100 to 2000 Ω cm with a CZ method. In a case where poly-silicon produced with a Siemens method using trichlorosilane as raw material is used as the silicon raw material, an impurity concentration in the silicon raw material is selected so as to be controlled in the range of from −5 to 50 ppta method in terms of (a donor concentration—an acceptor concentration) and the selected poly-silicon is used. In a case of a MCZ method, the poly-silicon is selected in the range of from −25 to 20 ppta and the selected poly-silicon is used. Instead of the raw material, poly-silicon produced with a Siemens method using monosilane as raw material is used. Alternatively, a silicon crystal manufactured with a CZ method or a MCZ method using poly-silicon raw material is used.