摘要:
A color electrophotographic process comprises applying voltage between a non-transparent electrode and a color filter electrode of an electrophotographic photosensitive member comprising isolated conductive members forming picture elements, a photoconductive layer, non-transparent electrodes and color filter electrodes, conducting imagewise exposure from the side where color filter electrodes are arranged, resulting in formation of a difference in distribution voltage between the area wherein light passes through the color filter electrode and the area wherein light does not pass through the color filter electrode with regard to the voltage distribution between the non-transparent electrode and the isolated conductive member and between the color filter electrode and the isolated conductive member, thereby forming a voltage image depending upon the change of the voltage of the isolated conductive member caused corresponding to a difference in distribution voltage, and developing said voltage image with a color toner corresponding to a color light passing through the color filter electrode. Further there is disclosed an electrophotographic photosensitive member for a color electrophotographic process as mentioned above.
摘要:
An electrophotographic photosensitive member for forming a potential image utilizing the difference in voltage distribution resulting from the change in resistance of a photoconductive layer. The photosensitive member is featured in forming a high-contrast potential image by the use of amorphous silicon for the photoconductive layer.
摘要:
Disclosed is an electrophotographic process comprises applying voltage between a transparent electrode and an opaque electrode of a photosensitive member comprising isolated electrically conductive members forming image elements, a photoconductive layer, transparent electrodes and opaque electrodes, imagewise exposing the side opposite the side where the isolated electrically conductive members are arranged, resulting in formation of voltage differences between the area where light passes through a transparent electrode and the area where light does not pass through the transparent electrode, said distribution voltage being a voltage between the transparent electrode and the isolated electrically conductive electrode and a voltage between the opaque electrode and the isolated electrically conductive electrode, thereby forming a voltage image depending upon the change of voltage of the isolated electrically conductive member produced corresponding to the difference in the distribution voltage, and scanning the electrophotographic photosensitive member within the area where imagewise exposure is carried out, or moving an image receiving member and an optical image projected on the electrophotographic photosensitive member in the relatively opposite direction, simultaneously with attaching a developer to the image receiving member based on an electric field produced by the voltage image.In foregoing process, the imagewise exposure is carried out through a color filter, a color developer corresponding to the color light which passes through the transparent electrode is attached to the image receiving member based on an electric field produced by the voltage image. Said color filter comprises a red filter, a green filter, and a blue filter. Each of said color filters and each of said electrophotographic photosensitive members are assembled in one unit.
摘要:
An electrophotographic photosensitive member comprises isolated conductive members forming picture elements, a photoconductive layer, transparent electrodes and color filter electrodes. Also, a color electrographic process which comprises applying voltage between a transparent electrode and color filter electrode of an electrophotographic photosensitive member comprising isolated conductive members forming picture elements, a photoconductive layer, transparent electrodes and color filter electrodes, conducting imagewise exposure from the side opposite to the side where the isolated conductive members are arranged, resulting in formation of difference in distribution voltage between the area that light passes through the color filter electrode and the area that light does not pass through the color filter electrode with regard to the voltage distribution between the transparent electrode and the isolated conductive member and between the color filter electrode and the isolated conductive member, thereby forming a voltage image depending upon the change of voltage of the isolated conductive member produced corresponding to the difference in the distribution voltage, and developing said voltage image with a color toner corresponding to a color light passing through the color filter electrode.
摘要:
An electrophotographic method for color image formation, wherein use is made of an electrophotographic photosensitive member having a multitude of isolated electrically conductive members for forming image elements, a photoconductive layer, and a multitude of sets of electrodes for determining an electric potential of the isolated electrically conductive members in correspondence to a color image original, each set of electrodes comprising a non-transparent electrode, a transparent electrode, and color filter electrodes, and wherein a voltage is applied across the electrodes followed by development.
摘要:
This invention presents a process and an apparatus for repeatedly forming a high contrast image on a photosensitive member substantially comprising a conductive layer, a photoconductive layer and an insulating layer. According to this invention, during the processing steps of a latent image formed on the photosensitive member, an exposure step or means is provided for preventing the effect of a corona discharge of the same polarity as of the polarity of the photoconductive layer from affecting the succeeding latent image formation on the photosensitive member.
摘要:
This invention presents a process and an apparatus for repeatedly forming a high contrast image on a photosensitive member substantially comprising a conductive layer a photoconductive layer and an insulating layer. According to this invention, during the processing steps of a latent image formed on the photosensitive member, an exposure step or means is provided for preventing the effect of a corona discharge of the same polarity as that of the photoconductive layer from affecting the succeeding latent image formation on the photosensitive member.
摘要:
A liquid-phase growth method for immersing a polycrystalline substrate in a melt in a crucible wherein crystal ingredients are dissolved, thereby growing poly crystals upon the substrate, comprises a first step for growing poly crystals to a predetermined thickness, and a second step for melting back a part of the poly crystals grown in the first step in the melt, wherein the relative position between the substrate and melt is changed between the first step and second step, bringing melt with different temperature into contact with the polycrystalline surface. The obtained poly crystals have properties rivaling those of poly crystals used in conventional solar cells but with little risk of trouble such as line breakage of grid electrodes in application to solar cells, and can be obtained in great quantities at low costs.
摘要:
A deposition film is formed on a substrate in a deposition space (A) by the chemical reaction between a gaseous precursor of a higher silicon halide or a higher halosilane formed in a decomposition space (B) and a separately-introduced gaseous, activated species of hydrogen, silane or a halosilane formed in a decomposition space (C).
摘要:
A method for forming a deposition film, comprising decomposing a first compound containing germanium and halogen in an activation chamber by applying an energy to form an active species; separately introducing, into a film-forming chamber for forming a deposition film on a substrate, a second compound containing silicon and hydrogen and the active species, which is capable of chemical interaction with the second compound containing silicon and hydrogen; and applying to a mixture of the second compound and the active species at least one excitation energy selected from optical, thermal and discharge energies to excite the second compound in the mixture, thereby facilitating the formation of a deposition film on the substrate.