摘要:
A device and method of detecting surface plasmon resonance for sensing molecules or conformational changes in molecules with high resolution and fast response time is disclosed. Light from a light source (14) is focused through a prism onto a metal thin film (15) on which sample molecules to be detected are adsorbed. The total internal reflection of the laser/incident light is collected with a differential position or intensity sensitive photo-detecting device instead of a single cell or an array of photo-detectors (12) that are widely used in previous works. The ratio of the differential signal to the sum signal of the differential position or intensity sensitive photo-detecting device (12) provides an accurate measurement of the shift in the surface plasmon resonance angle caused by the adsorption of molecules onto the metal films (15) or by conformational changes in the adsorbed molecules. The present invention requires no numerical fitting to determine the resonant angle and the setup is compact and immune to background light, The methods and sensors of this invention can be used in numerous biological, biochemical, and chemical applications such as measuring subtle conformational changes in molecules and electron transfer reactions can be studied.
摘要:
A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.
摘要:
A method for forming atomic-scale contacts and atomic-scale gaps between two electrodes is disclosed. The method provides for applying a voltage between two electrodes in a circuit with a resistor. The applied voltage etches metal ions off one electrode and deposits the metal ions onto the second electrode. The metal ions are deposited on the sharpest point of the second electrode, causing the second electrode to grow towards the first electrode until an atomic-scale contact is formed. By increasing the magnitude of the resistor, the etching and deposition process will terminate prior to contact, forming an atomic-scale gap. The atomic-scale contacts and gaps formed according to this method are useful as a variety of nanosensors including chemical sensors, biosensors, hydrogen ion sensors, heavy metal ion sensors, magnetoresistive sensors, and molecular switches.
摘要:
A method for forming atomic-scale contacts and atomic-scale gaps between two electrodes is disclosed. The method provides for applying a voltage between two electrodes in a circuit with a resistor. The applied voltage etches metal ions off one electrode and deposits the metal ions onto the second electrode. The metal ions are deposited on the sharpest point of the second electrode, causing the second electrode to grow towards the first electrode until an atomic-scale contact is formed. By increasing the magnitude of the resistor, the etching and deposition process will terminate prior to contact, forming an atomic-scale gap. The atomic-scale contacts and gaps formed according to this method are useful as a variety of nanosensors including chemical sensors, biosensors, hydrogen ion sensors, heavy metal ion sensors, magnetoresistive sensors, and molecular switches.
摘要:
A method for detecting biomarkers with shortened test time and maximized precision. A sample from the body fluid is made to flow over a sensor surface coated with a capture antibody to allow binding of a biomarker in the sample to the capture body. An optical method detects and counts the individual binding events along the sensor surface with single molecule resolution, and difference in the binding events along the sensor surface is detected in real time and analyzed to determine the biomarker concentration.
摘要:
A method for weight and/or fitness management using a metabolic analyzer that measures metabolic data including oxygen and carbon dioxide. The metabolic analyzer includes integrated collection-detection sensors with for high efficiency and collection, high specificity and simultaneous detection of at least two metabolic signatures, including at least oxygen and carbon dioxide, in breath via a porous membrane with high density of sensing binding sites, where the porous membrane includes sensing materials such that the sensing binding sites are specific to the metabolic signatures, and change colors upon interactions with the metabolic signatures. Weight of the subject is measured using a weight measurement device and a recommendation for food intake and/or physical activity is based on at least the readings of the metabolic analyzer and weight of the subject.
摘要:
A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.
摘要:
An integrated sensing device is capable of detecting analytes using electrochemical (EC) and electrical (E) signals. The device introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.
摘要:
A method for weight and/or fitness management using a metabolic analyzer that measures metabolic data including oxygen and carbon dioxide. The metabolic analyzer includes integrated collection-detection sensors with for high efficiency and collection, high specificity and simultaneous detection of at least two metabolic signatures, including at least oxygen and carbon dioxide, in breath via a porous membrane with high density of sensing binding sites, where the porous membrane includes sensing materials such that the sensing binding sites are specific to the metabolic signatures, and change colors upon interactions with the metabolic signatures. Weight of the subject is measured using a weight measurement device and a recommendation for food intake and/or physical activity is based on at least the readings of the metabolic analyzer and weight of the subject.
摘要:
A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.