Abstract:
The efficacy of S. pneumoniae vaccines can be enhanced by adjuvanting S. pneumoniae saccharide and/or protein antigens with a mixture of a TLR agonist (preferably a TLR7 agonist) and an insoluble metal salt (preferably an aluminium salt). The TLR agonist is typically adsorbed to the metal salt. The S. pneumoniae antigen can also be adsorbed to the metal salt.
Abstract:
The efficacy of rabies vaccines can be enhanced by adjuvanting rabies virus immunogens with a mixture of a TLR agonist (preferably a TLR7 agonist) and an insoluble metal salt (preferably an aluminium salt). The TLR agonist is typically adsorbed to the metal salt. The rabies virus immunogen can also be adsorbed to the metal salt.
Abstract:
The invention improves TdaP vaccines by including a TLR agonist in them. This agonist can provide stronger protection, longer-lasting protection, and/or can reduce the amount of antigen which is required to achieve a particular immune response.
Abstract:
An immunogenic composition comprising a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, an aluminium salt adjuvant, and a TLR4 agonist. Preferably, the TLR4 agonist and/or at least one of the toxoids is/are adsorbed to the aluminium salt adjuvant.
Abstract:
This invention generally relates to cationic oil-in-water emulsions that can be used to deliver negatively charged molecules, such as an RNA molecule. The emulsion particles comprise an oil core and a cationic lipid. The cationic lipid can interact with the negatively charged molecule thereby anchoring the molecule to the emulsion particles. The cationic emulsions described herein are particularly suitable for delivering nucleic acid molecules (such as an RNA molecule encoding an antigen) to cells and formulating nucleic acid-based vaccines.
Abstract:
Immunogenic compositions are disclosed which comprise microparticles that comprise a biodegradable polymer, an immunological adjuvant and a tocol-family compound. Methods of making and using such microparticle compositions are also disclosed.