摘要:
In order to measure a characteristics of a light beam which is repetitively deflected by a light scanning device within a first range in a first direction at a first velocity, there is provided a plate formed with at least one slit extending in a direction angled from the first direction and having a constant width. The plate is moved within the first range in the first direction at a second velocity which is sufficiently lower than the first velocity. A peak value of an optical power of light passing through the slit every time is detected when the deflected light beam crosses the slit being moved, thereby obtaining peak values at plural positions in the first direction. The peak values are displayed on a screen collectively in such a manner that positions on the screen correspond to the positions in the first direction.
摘要:
An optical scanner emits a light beam in accordance with an image forming signal and deflects the light beam in a first direction. A scanned face is adapted to be scanned by the deflected light beam to form a scanning line while being moved in a second direction perpendicular to the first direction, thereby forming a latent image thereon. A virtual scanned face is defined as a plane including the scanning line and orthogonal to an optical axis of the optical scanner. The shape of a beam spot formed by the light beam incident on the virtual scanned face is approximated to an ellipse. The scanned face is inclined from the virtual scanned face so as to rotate about the scanning line, in accordance with an inclined angle of an major axis of the ellipse from the second direction on the virtual scanned face.
摘要:
The present invention relates to an optical scanning device in which a light beam is incident twice on a deflective reflecting facet and its object is to reduce curvature in scanning line trail or make the curvature substantially zero, or correct scanning line displacement due to the curvature in scanning line trail. Two stationary plane mirrors (13, 14) are disposed to face a deflective reflecting facet (11) which can be rotated about its rotational axis (12) such that a light beam (a1) being incident on and reflected from the deflective reflecting facet (11) is reflected by the two stationary plane mirrors (13, 14) sequentially. The reflected light beam (a3) is incident on and reflected by the deflective reflecting facet (11) again. Assuming that a plane being parallel to the rotational axis (12) and including the light beam (a0) which is first incident on the deflective reflecting facet is an incident plane, the central ray of an emergent light beam (a4) when the emergent light beam (a4) after the second reflection by the deflective reflecting facet (11) is on the incident plane and a straight line as the central ray of a light beam being projected on the incident plane when the deflective reflecting facet (11) is revolved by the maximum rotational angle are set substantially parallel to each other.
摘要:
In order to determine an arrangement of an optical scanning device provided with a rotary polygon mirror having a plurality of reflective faces, it is determined a direction of polarization of light which is to be made incident on one of the reflective faces and to be reflected and deflected in accordance with a rotary action of the polygon mirror; and it is determined a direction from which the light is made incident on the one of the reflective faces, such that a variation of reflectivity of the light depending on a variation of an incident angle thereof in accordance with the rotary action of the polygon mirror compensate for a positional variation of reflectivity on the one of the reflective faces.
摘要:
The present invention relates to an optical scanning device in which a light beam is incident twice on a deflective reflecting facet and its object is to reduce curvature in scanning line trail or make the curvature substantially zero, or correct scanning line displacement due to the curvature in scanning line trail. Two stationary plane mirrors (13, 14) are disposed to face a deflective reflecting facet (11) which can be rotated about its rotational axis (12) such that a light beam (a1) being incident on and reflected from the deflective reflecting facet (11) is reflected by the two stationary plane mirrors (13, 14) sequentially. The reflected light beam (a3) is incident on and reflected by the deflective reflecting facet (11) again. Assuming that a plane being parallel to the rotational axis (12) and including the light beam (a0) which is first incident on the deflective reflecting facet is an incident plane, the central ray of an emergent light beam (a4) when the emergent light beam (a4) after the second reflection by the deflective reflecting facet (11) is on the incident plane and a straight line as the central ray of a light beam being projected on the incident plane when the deflective reflecting facet (11) is revolved by the maximum rotational angle are set substantially parallel to each other.
摘要:
In order to determine an arrangement of an optical scanning device provided with a rotary polygon mirror having a plurality of reflective faces, it is determined a direction of polarization of light which is to be made incident on one of the reflective faces and to be reflected and deflected in accordance with a rotary action of the polygon mirror; and it is determined a direction from which the light is made incident on the one of the reflective faces, such that a variation of reflectivity of the light depending on a variation of an incident angle thereof in accordance with the rotary action of the polygon mirror compensate for a positional variation of reflectivity on the one of the reflective faces.
摘要:
An optical scanner emits a light beam in accordance with an image forming signal and deflects the light beam in a first direction. A scanned face is adapted to be scanned by the deflected light beam to form a scanning line while being moved in a second direction perpendicular to the first direction, thereby forming a latent image thereon. A virtual scanned face is defined as a plane including the scanning line and orthogonal to an optical axis of the optical scanner. The shape of a beam spot formed by the light beam incident on the virtual scanned face is approximated to an ellipse. The scanned face is inclined from the virtual scanned face so as to rotate about the scanning line, in accordance with an inclined angle of an major axis of the ellipse from the second direction on the virtual scanned face.
摘要:
In order to measure a characteristics of a light beam which is repetitively deflected by a light scanning device within a first range in a first direction at a first velocity, there is provided a plate formed with at least one slit extending in a direction angled from the first direction and having a constant width. The plate is moved within the first range in the first direction at a second velocity which is sufficiently lower than the first velocity. A peak value of an optical power of light passing through the slit every time is detected when the deflected light beam crosses the slit being moved, thereby obtaining peak values at plural positions in the first direction. The peak values are displayed on a screen collectively in such a manner that positions on the screen correspond to the positions in the first direction.
摘要:
A multi-beam optical scanner includes shaping optics (42) by which a plurality of light beams issued from light emitting portions (411, 412) are shaped to be substantially parallel in a primary scanning direction, a deflector having reflecting faces (45) that reflect and deflect the plurality of light beams and scanning optics (46) by which the plurality of light beams reflected and deflected by the reflecting faces (45) are scanned across a plane (48) to be scanned as a plurality of adjacent beam spots, wherein the distance from the rear principal plane of the shaping optics (42) to the front principal plane of the scanning optics 46 is expressed by f1+f2, where f1 and f2 are the focal lengths of the shaping optics (42) and the scanning optics (46), respectively, in the primary scanning direction.
摘要:
A line head includes: a first lens formed from a resin and on a glass substrate; and a light emitting element substrate that has light emitting elements arranged in a first direction, wherein a cross section of the first lens taken in the first direction and including an optical axis of the first lens has a configuration wherein a curvature of the first lens at the optical axis has a larger absolute value than a curvature of an outer peripheral portion of the first lens.