Abstract:
A polymerase chain reaction (PCR) module is detachably combined with a reader system. The reader system includes a central processing unit (CPU) receiving a photo sensing signal to calculate gene amplification amount in real time and generating a temperature control signal based on a temperature signal and a temperature control information. The PCR module includes a photo sensor assembly, a partition wall, and an interface module. The photo sensor assembly includes a plurality of photo sensors and a temperature sensor. The photo sensors are arranged in an array shape to sense emission light generated from a specimen to generate the photo sensing signal. The partition wall is protruded from the photo sensor assembly to define a reaction space in which the specimen is received. The interface module is electrically connected to the photo sensor assembly to transmit the photo sensing signal and the temperature signal to the reader system.
Abstract:
A polymerase chain reaction (PCR) module is detachably combined with a reader system. The reader system includes a central processing unit (CPU) receiving a photo sensing signal to calculate gene amplification amount in real time and generating a temperature control signal based on a temperature signal and a temperature control information. The PCR module includes a photo sensor assembly, a partition wall, and an interface module. The photo sensor assembly includes a plurality of photo sensors and a temperature sensor. The photo sensors are arranged in an array shape to sense emission light generated from a specimen to generate the photo sensing signal. The partition wall is protruded from the photo sensor assembly to define a reaction space in which the specimen is received. The interface module is electrically connected to the photo sensor assembly to transmit the photo sensing signal and the temperature signal to the reader system.
Abstract:
A display device includes an upper structure, a lower structure, and a connecting element. The upper structure includes a display element having a first electrode, a light emitting layer, and a second electrode. The light emitting layer is disposed on the first electrode to generate light. The second electrode is disposed on the light emitting layer to transmit the light. The lower structure includes a display driving circuit. The display driving circuit receives an image signal to apply an electric power to the first electrode. The lower structure is physically separated from the upper structure to be spaced apart from the upper structure by a predetermined distance with respect to a vertical direction. The connecting element is disposed between the upper structure and the lower structure to connect the first electrode to the display driving circuit.