摘要:
The invention concerns a hybrid arc-laser method for welding metal parts, such as a tube or tailored blanks by producing at least a weld joint between edges to be welded and by using a laser beam and an electric arc combined with each other so as to melt and subsequently solidify the metal along said edges to be welded. Said method consists in: (a) striking at least a pilot arc between an electrode and a hybrid welding head nozzle, said electrode being powered with electric current and being contacted with a first gas input in said hybrid welding head, said first gas having a gas composition capable of promoting sparking of the pilot arc; (b) transferring the thus sparked pilot arc to the edges of the part(s) to be welded; and (c) feeding said hybrid welding head with a second gas so as to obtain a protective gaseous atmosphere consisting of a mixture of the first gas and the second gas, said protective gaseous atmosphere being evacuated towards the welding zone by said hybrid welding head and protecting at least part of the welding zone during welding of the weld joint by combining the laser beam and the electric arc, the volume flow rate of the first gas (Q1) and the volume flow rate of the second gas (Q2) being adjusted such that: 0
摘要:
A process and a device for the gas-shielded MIG welding in modulated-spray mode, of aluminum, particularly aluminum alloys, or stainless steels, in which the current is modulated at a modulation frequency of less than 60 Hz. The shielding gas contains at least 90% helium, argon or a mixture thereof and at most 1.95% of at least one minor gaseous component chosen from oxygen and carbon dioxide. This process allows effective degassing of most of the diffusible hydrogen liable to be found in the pool of molten metal and improves the appearance and quality of the weld beads thus produced on workpieces or equipment intended for the rail, sea, air, road or space transport industry or for the chemical, petrochemical, electronic, nuclear or agrochemical industries.
摘要:
Method and apparatus for cutting a workpiece made of structural steel or mild steel, i.e. alloy or non-alloy steels, by the use of a transparent or reflecting optical unit for focusing a laser beam, and of an assist gas for the laser beam. The optical unit is of the multifocus type and is chosen from lenses, mirrors and combinations thereof. The assist gas is nitrogen or a nitrogen/oxygen mixture. The method of the invention makes it possible to obtain a low or almost zero oxidation of the cut face and to do so while increasing the cutting performance by about 40% compared with a laser cutting method using nitrogen or a nitrogen/oxygen mixture.
摘要:
The invention relates to a laser machining equipment including a laser oscillator (1) for generating a laser beam, a laser head (3) through which the laser beam passes, an optical path (2) for conveying the laser beam between the laser oscillator (1) and the laser head (3), and a gas source (9) fluidly connected to the laser head (3) via a main gas pipe (8). In addition, a second pipe (18) fluidly connects the gas source (9) to the laser oscillator (1). The equipment therefore comprises a common gas source for the laser oscillator (1) and head (3). The gas is preferably nitrogen.
摘要:
A method for the hybrid laser-arc welding of several metal workpieces. The welding process uses at least one laser beam and at least one electric arc. The metal workpieces are stacked in a multiple-thickness configuration and the laser beam and the electric arc are used to weld the edges of the multiple-thickness configuration.
摘要:
The invention concerns a method for cutting a metal or metal alloy workpiece using at least a laser beam and at least an assist gas of said laser beam wherein the assist gas consists of a mixture of helium and argon and/or nitrogen or of nitrogen and oxygen and the cutting speed is faster than 15 m/min. The thickness of the workpiece to be cut ranges between 0.5 mm and 10 mm, preferably more than 0.5 mm. The workpiece to be cut is selected among plates, metal sheets and tubes. The laser beam is delivered by a CO2 type or YAG:Nd laser device.