Abstract:
A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
Abstract:
A non-ablative method and apparatus for making an economical glass hard disk (platter) for a computer hard disk drive (HDD) using a material machining technique involving filamentation by burst ultrafast laser pulses. Two related methods disclosed, differing only in whether the glass substrate the HDD platter is to be cut from has been coated with all the necessary material layers to function as a magnetic media in a computer's hard drive. Platter blanks are precisely cut using filamentation by burst ultrafast laser pulses such that the blank's edges need not be ground, the platter's geometric circularity need not be corrected and there is no need for further surface polishing. Thus the platters can be cut from raw glass or coated glass. As a result, this method reduces the product contamination, speeds up production, and realizes great reductions in the quantity of waste materials and lower production costs.
Abstract:
For allowing a crack to progress between respective lines reliably while shortening a laser beam irradiation time, a method for processing SiC material includes allowing a laser beam to be absorbed in a cutting scheduled plane of an SiC material to form an altered pattern including a plurality of line-shaped altered regions; and cutting the SiC material along the cutting scheduled plane, wherein a plurality of line-shaped main altered regions extending in a predetermined direction, arranged at a first pitch P1 and included in altered region groups is formed, and a plurality of altered region groups is arranged at a second pitch P2 larger than the first pitch P1.
Abstract:
An optical lens comprising a first lens (L1), a second lens (L2), and a third lens (L3) that are sequentially arranged on a common optical axis in the transmission direction of an incident light. Both the first lens and the second lens are positive plano-convex lenses. The third lens is a negative meniscus lens. The first lens comprises a first curved surface (S1) and a second curved surface (S2). The second lens comprises a third curved surface (S3) and a fourth curved surface (S4). The third lens comprises a fifth curved surface (S5) and a sixth curved surface (S6). The two curved surfaces of each lens respectively are the light incident surface and the light exit surface of the lens. The first to the sixth curved surfaces are sequentially arranged in the transmission direction of the incident light. The first curved surface and the third curved surface protrude in reverse to the transmission direction of the incident light. The fifth curved surface and the sixth curved surface protrude in the transmission direction of the incident light. The third curved surface is constituted by connecting sequentially and directly multiple arced surfaces (Φ1, Φ2, Φ3, Φ4, and Φ5) having different focuses and all of the focuses (f1, f2, f3, f4, and f5) of these arced surfaces are located on the optical axis. The optical lens is applicable in processing deep and fine holes or engraving deep and fine lines.
Abstract:
A direct diode laser processing apparatus includes a laser oscillator that emits a multiple-wavelength laser beam, a transmission fiber that transmits the multiple-wavelength laser beam emitted from the laser oscillator, and a laser processing machine that condenses the multiple-wavelength laser beam transmitted through the transmission fiber and processes a workpiece. According to chromatic aberrations of the multiple-wavelength laser beam and the wavelength dependence of emissivity of the workpiece, a light intensity distribution of the multiple-wavelength laser beam in a thickness direction of the workpiece is provided with a plurality of peaks.
Abstract:
Disclosed are a laser processing method for cutting a semiconductor wafer having a metal layer formed thereon and a laser processing device. The disclosed laser processing method transmits a plurality of laser beams, which propagate coaxially, to the semiconductor wafer, thereby forming focusing points in positions adjacent to a surface of the metal layer, which constitutes a boundary with the semiconductor wafer, and to one surface of the semiconductor wafer, respectively.
Abstract:
A laser processing device comprises a laser light source emitting the laser light, a spatial light modulator modulating the laser light emitted from the laser light source, and a converging optical system converging the laser light modulated by the spatial light modulator at the object. A plurality of rows of modified regions include at least an entrance-surface-side modified region located on the laser light entrance surface side, an opposite-surface-side modified region located on the opposite surface side of the laser light entrance surface, and a middle modified region located between the entrance-surface-side modified region and opposite-surface-side modified region. When forming the middle modified region, the spatial light modulator displays an axicon lens pattern as a modulation pattern so as to form converging points at a plurality of positions juxtaposed close to each other along a laser light irradiation direction. When forming the entrance-surface-side modified region and opposite-surface-side modified region, the spatial light modulator is restrained from displaying the axicon lens pattern as the modulation pattern.
Abstract:
Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
Abstract:
A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.
Abstract:
[Object]To provide a laser processing apparatus and a laser processing method which are capable of reducing roughness of a cut surface in laser cutting using laser beams transmitted through optical fibers.[Solution]A laser processing apparatus according to the present invention includes at least one laser oscillator configured to emit laser beams, a plurality of optical fibers configured to transmit the emitted laser beams, and at least one optical element configured to focus the laser beams emitted from the optical fibers and irradiate a surface of a workpiece with the focused laser beams. At output ends of the optical fibers, the output ends of the plurality of optical fibers are placed in one or a plurality of ring shapes. Laser beams transmitted through the plurality of optical fibers placed on at least an outermost ring of the ring shapes each have a linear polarization, and polarization directions of the linearly polarized laser beams emitted from the output ends of the plurality of optical fibers are arranged radially around a center of the outermost ring.