摘要:
A semiconductor device is formed as part of an integrated circuit. The semiconductor device, which is formed in an active semiconductor layer, is surrounded by a guardian that provides a diffusion barrier against contaminants and also provides assistance in avoiding dishing above the semiconductor device during chemical mechanical polishing. The dielectric that is above the semiconductor device and inside the guardian is etched to form an opening that receives one of an optical fiber, an electromagnetic signal source, or an electromagnetic signal load. The remaining dielectric is in layers that are of substantially uniform thickness. The guardian is built up in layers that are part of a normal integrated circuit process. These include contact layers, via layers, and interconnect layers.
摘要:
A semiconductor device is formed as part of an integrated circuit. The semiconductor device, which is formed in an active semiconductor layer, is surrounded by a guardian that provides a diffusion barrier against contaminants and also provides assistance in avoiding dishing above the semiconductor device during chemical mechanical polishing. The dielectric that is above the semiconductor device and inside the guardian is etched to form an opening that receives one of an optical fiber, an electromagnetic signal source, or an electromagnetic signal load. The remaining dielectric is in layers that are of substantially uniform thickness. The guardian is built up in layers that are part of a normal integrated circuit process. These include contact layers, via layers, and interconnect layers.
摘要:
A semiconductor structure has a waveguide a transistor on the same integrated circuit. One trench isolation technique is used for defining a transistor region and another is used for optimizing a lateral boundary of the waveguide. Both the waveguide and the transistor have trenches with liners that can be separately optimized. The transistor has a salicide for source/drain contacts. During this process, a salicide block is used over the waveguide to prevent salicide formation in unwanted areas of the waveguide. The depth of the trench for the waveguide can be lower than that of the trench for the transistor isolation. Trench isolation depth can be set by an etch stop region that can be either a thin oxide layer or a buffer layer that is selectively etchable with respect to the top semiconductor layer and that can be used as a seed layer for growing the top semiconductor layer.
摘要:
A method for integrating first and second type devices on a semiconductor substrate includes forming openings within an active semiconductor layer of a dual semiconductor-on-insulator in first and second regions of the semiconductor substrate. First and second non-MOS transistor device implant regions are formed within portions of an intermediate semiconductor layer underlying first and second openings, respectively, in a first device portion, filled with a fill material and planarized. A top surface portion of the active semiconductor layer disposed in-between the first and second openings is exposed, first and second low dose non-MOS transistor device well regions are formed in respective first and second portions of the intermediate semiconductor layer underlying a region in-between the first and second openings. The method further includes forming a salicide blocking layer, forming first and second contact vias within the fill material of the first and second openings, respectively, exposing a portion of the underlying intermediate semiconductor layer, forming first and second non-MOS transistor device contact regions in exposed portions of the intermediate semiconductor layer, and saliciding the semiconductor substrate, the salicide blocking layer preventing salicidation of the first and second low dose non-MOS transistor device well regions.
摘要:
A method of integrating a non-MOS transistor device and a CMOS electronic device on a semiconductor substrate includes forming openings within an active semiconductor layer in first and second regions of a semiconductor substrate. The first region corresponds to a non-MOS transistor device portion and the second region corresponds to a CMOS electronic device portion. The openings are formed using a dual trench process, forming openings or shallow trenches in the non-MOS transistor device portion to a first depth, and openings in the CMOS electronic device portion to a second depth greater than the first depth. The method further includes forming first and second non-MOS transistor device implant regions within the active semiconductor layer underlying the shallow trenches in the non-MOS transistor device portion, forming first and second low dose non-MOS transistor device well regions in the active semiconductor layer disposed in-between the first and second shallow trenches, forming high dose non-MOS transistor device connectivity regions, forming a salicide blocking layer overlying at least the first and second low dose non-MOS transistor device well regions, forming first and second non-MOS transistor device contact regions, and saliciding the semiconductor substrate, wherein the salicide blocking layer prevents salicidation of the first and second low dose non-MOS transistor device well regions.
摘要:
A method for forming a semiconductor device includes providing a semiconductor substrate having a first region and a second region. The first region has one or more first elements and the second region has one or more second elements. The first elements are different from the second elements. A tile location and a first tile surface area for a tile feature on the semiconductor device is defined. An active semiconductor layer is formed over both the first region and the second region of the semiconductor substrate. A first trench is formed in the active semiconductor layer at the tile location using a negative tone mask. The first trench has a first depth and forms at least a portion of the tile feature. A second trench is formed in the active semiconductor layer using a positive tone mask. The second trench has a second depth different than the first depth.
摘要:
A semiconductor process and apparatus provide a planarized hybrid substrate (18) by exposing a buried oxide layer (80) in a first area (99), selectively etching the buried oxide layer (80) to expose a first semiconductor layer (70) in a second smaller seed area (98), and then epitaxially growing a first epitaxial semiconductor material from the seed area (98) of the first semiconductor layer (70) that fills the second trench opening (100) and grows laterally over the exposed insulator layer (80) to fill at least part of the first trench opening (99), thereby forming a first epitaxial semiconductor layer (101) that is electrically isolated from the second semiconductor layer (90). By forming a first SOI transistor device (160) over a first SOI layer (90) using deposited (100) silicon and forming first SOI transistor (161) over an epitaxially grown (110) silicon layer (101), a high performance CMOS device is obtained.
摘要:
In one embodiment, a method for forming a semiconductor device is described. A semiconductor substrate has a first portion and a second portion. A first dielectric layer formed over the first portion of the semiconductor substrate and a second dielectric layer is formed over the second portion of the semiconductor substrate. A cap that may include silicon, such as polysilicon, is formed over the first dielectric layer. A first electrode layer is formed over the cap and a second electrode layer is formed over the second dielectric.
摘要:
A semiconductor structure has a waveguide a transistor on the same integrated circuit. One trench isolation technique is used for defining a transistor region and another is used for optimizing a lateral boundary of the waveguide. Both the waveguide and the transistor have trenches with liners that can be separately optimized. The transistor has a salicide for source/drain contacts. During this process, a salicide block is used over the waveguide to prevent salicide formation in unwanted areas of the waveguide. The depth of the trench for the waveguide can be lower than that of the trench for the transistor isolation. Trench isolation depth can be set by an etch stop region that can be either a thin oxide layer or a buffer layer that is selectively etchable with respect to the top semiconductor layer and that can be used as a seed layer for growing the top semiconductor layer.
摘要:
A semiconductor process and apparatus provide a planarized hybrid substrate (18) by exposing a buried oxide layer (80) in a first area (99), selectively etching the buried oxide layer (80) to expose a first semiconductor layer (70) in a second smaller seed area (98), and then epitaxially growing a first epitaxial semiconductor material from the seed area (98) of the first semiconductor layer (70) that fills the second trench opening (100) and grows laterally over the exposed insulator layer (80) to fill at least part of the first trench opening (99), thereby forming a first epitaxial semiconductor layer (101) that is electrically isolated from the second semiconductor layer (90). By forming a first SOI transistor device (160) over a first SOI layer (90) using deposited (100) silicon and forming first SOI transistor (161) over an epitaxially grown (110) silicon layer (101), a high performance CMOS device is obtained.